Do you want to publish a course? Click here

FUV Spectroscopy of the Dwarf Novae SS Cygni and WX Hydri in Quiescence

212   0   0.0 ( 0 )
 Added by Sharon Toolan
 Publication date 2005
  fields Physics
and research's language is English
 Authors Knox S. Long




Ask ChatGPT about the research

We present time-resolved FUV spectra of the dwarf novae SS Cyg and WX Hyi in quiescence from observations using the Hopkins Ultraviolet Telescope on the Astro-1 and Astro-2 Space Shuttle missions and the Goddard High Resolution Spectrograph on the Hubble Space Telescope. Both dwarf novae are characterized by blue continua that extend to the Lyman limit punctuated by broad emission lines including transitions of O VI, N V, Si IV, and C IV. The continuum of WX Hyi can be fit with a white dwarf model with physically reasonable model parameters, but neither system actually shows unambiguous signatures of white dwarf emission. The shape and flux of the spectrum of SS Cyg cannot be self-consistently reconciled with a white dwarf providing all of the FUV continuum flux. Combination white dwarf/disk or white dwarf/optically thin plasma models improve the fit but still do not give physically reasonable model parameters for a quiescent dwarf nova. Assuming that the UV emission lines arise from the disk, the line shapes indicate that surface fluxes fall roughly as R^{-2} in both systems. Fits to the double-peaked line profiles in SS Cyg indicate that the FUV line forming region is concentrated closer to the white dwarf than that of the optical lines and provide no evidence of a hole in the inner disk. Although the flux from SS Cyg was relatively constant during all of our observations, WX Hyi showed significant variability during the GHRS observations. In WX Hyi, the line and continuum fluxes are (with the exception of He II) highly correlated, indicating a link between the formation mechanisms of the line and continuum regions.



rate research

Read More

We present results from the Suzaku observations of the dwarf nova SS Cyg in quiescence and outburst in 2005 November. Owing to high sensitivity of the HXD PIN detector and high spectral resolution of the XIS, we have determined parameters of the plasma with unprecedented precision. The maximum temperature of the plasma in quiescence 20.4 +4.0-2.6 (stat.) +/- 3.0 (sys.) keV is significantly higher than that in outburst 6.0 +0.2-1.3 keV. The elemental abundances are close to the solar ones for the medium-Z elements (Si, S, Ar) whereas they decline both in lighter and heavier elements. Those of oxygen and iron are 0.46 and 0.37 solar, respectively. That of carbon is exceptionally high and 2 solar at least. The solid angle of the reflector subtending over the optically thin thermal plasma is Omega/2pi = 1.7+/-0.2 (stat.) +/-0.1 (sys.) in quiescence. A 6.4 keV iron Ka line is resolved into a narrow and broad components. These facts indicate that both the white dwarf and the accretion disk contribute to the continuum reflection and the 6.4 keV iron Ka line. We consider the standard optically thin boundary layer as the most plausible picture for the plasma configuration in quiescence. The solid angle of the reflector in outburst Omega/2pi = 0.9 +0.5-0.4 and a broad 6.4 keV iron line indicates that the reflection in outburst originates from the accretion disk and an equatorial accretion belt. From the energy width of the 6.4 keV line, we consider the optically thin thermal plasma in outburst as being distributed on the accretion disk like solar coronae.
The dwarf nova SS Cygni is a close binary star consisting of a K star transferring mass to a white dwarf by way of an accretion disk. We have obtained new spectroscopic observations of SS Cyg with the Hobby-Eberly Telescope (HET). Fits of synthetic spectra for Roche-lobe-filling stars to the absorption-line spectrum of the K star yield the amplitude of the K stars radial velocity curve and the mass ratio: K_{K} = 162.5 +/- 1.0 km/s and q= M_{K} /M_{wd} = 0.685 +/- 0.015. The fits also show that the accretion disk and white dwarf contribute a fraction f = 0.535 +/- 0.075 of the total flux at 5500 angstroms. Taking the weighted average of our results with previously published results obtained using similar techniques, we find <K_{K}> = 163.7 +/- 0.7 km/s and <q> = 0.683 +/- 0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations we limit the orbital inclination to the range 45 deg. <= i <= 56 deg. The derived masses of the K star and white dwarf are M_{K} = 0.55 +/- 0.13 M_sun and M_{wd} = 0.81 +/- 0.19 M_sun, where the uncertainties are dominated by systematic errors in the orbital inclination. The K star in SS Cyg is 10% to 50% larger than an unevolved star with the same mass and thus does not follow the mass-radius relation for Zero-Age Main-Sequence stars; nor does it follow the ZAMS mass/spectral-type relation. Its mass and spectral type are, however, consistent with models in which the core hydrogen has been significantly depleted.
We present the results of our spectroscopic study of the dwarf nova SS Cygni, using Roche tomography to map the stellar surface and derive the system parameters. Given that this technique takes into account the inhomogeneous brightness distribution on the surface of the secondary star, our derived parameters are (in principle) the most robust yet found for this system. Furthermore, our surface maps reveal that the secondary star is highly spotted, with strongly asymmetric irradiation on the inner hemisphere. Moreover, by constructing Doppler tomograms of several Balmer emission lines, we find strong asymmetric emission from the irradiated secondary star, and an asymmetric accretion disc that exhibits spiral structures.
We present the results of our intensive radio observing campaign of the dwarf nova SS Cyg during its 2010 April outburst. We argue that the observed radio emission was produced by synchrotron emission from a transient radio jet. Comparing the radio light curves from previous and subsequent outbursts of this system (including high-resolution observations from outbursts in 2011 and 2012) shows that the typical long and short outbursts of this system exhibit reproducible radio outbursts that do not vary significantly between outbursts, which is consistent with the similarity of the observed optical, ultraviolet and X-ray light curves. Contemporaneous optical and X-ray observations show that the radio emission appears to have been triggered at the same time as the initial X-ray flare, which occurs as disk material first reaches the boundary layer. This raises the possibility that the boundary region may be involved in jet production in accreting white dwarf systems. Our high spatial resolution monitoring shows that the compact jet remained active throughout the outburst with no radio quenching.
SS Cyg has long been recognized as the prototype of a group of dwarf novae that show only outbursts. However, this object has entered a quite anomalous event in 2021, which at first appeared to be standstill, i.e., an almost constant luminosity state, observed in Z Cam-type dwarf novae. This unexpected event gives us a great opportunity to reconsider the nature of standstill in cataclysmic variables. We have observed this anomalous event and its forerunner, a gradual and simultaneous increase in the optical and X-ray flux during quiescence, through many optical telescopes and the X-ray telescopes NICER and NuSTAR. We have not found any amplification of the orbital hump during quiescence before the anomalous event, which suggests that the mass transfer rate did not significantly fluctuate on average. The estimated X-ray flux was not enough to explain the increment of the optical flux during quiescence via X-ray irradiation of the disk and the secondary star. It would be natural to consider that viscosity in the quiescent disk was enhanced before the anomalous event, which increased mass accretion rates in the disk and raised not only the optical flux but also the X-ray flux. We suggest that enhanced viscosity also triggered the standstill-like phenomenon in SS Cyg, which is considered to be a series of small outbursts. The inner part of the disk would always stay in the outburst state and only its outer part would be unstable against the thermal-viscous instability during this phenomenon, which is consistent with the observed optical color variations. This scenario is in line with our X-ray spectral analyses which imply that the X-ray emitting inner accretion flow became hotter than usual and vertically expanded and that it became denser and was cooled down after the onset of the standstill-like state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا