No Arabic abstract
We present the results of our spectroscopic study of the dwarf nova SS Cygni, using Roche tomography to map the stellar surface and derive the system parameters. Given that this technique takes into account the inhomogeneous brightness distribution on the surface of the secondary star, our derived parameters are (in principle) the most robust yet found for this system. Furthermore, our surface maps reveal that the secondary star is highly spotted, with strongly asymmetric irradiation on the inner hemisphere. Moreover, by constructing Doppler tomograms of several Balmer emission lines, we find strong asymmetric emission from the irradiated secondary star, and an asymmetric accretion disc that exhibits spiral structures.
Spectra of 76 known dwarf novae from the LAMOST survey were presented. Most of the objects were observed in quiescence, and about 16 systems have typical outburst spectra. 36 of these systems were observed by SDSS, and most of their spectra are similar to the SDSS spectra. 2 objects, V367 Peg and V537 Peg, are the first to observe their spectra. The spectrum of V367 Peg shows a contribution from a M-type donor and its spectral type could be estimated as M3-5 by combining its orbital period. The signature of white dwarf spectrum can be seen clearly in four low-accretion-rate WZ Sge stars. Other special spectral features worthy of further observations are also noted and discussed. We present a LAMOST spectral atlas of outbursting dwarf novae. 6 objects have the first outburst spectra, and the others were also compared with the published outburst spectra. We argue that these data will be useful for further investigation of the accretion disc properties. The HeII $lambda$4686 emission line can be found in the outburst spectra of seven dwarf novae. These objects are excellent candidates for probing the spiral asymmetries of accretion disc.
We analyse four light curves obtained at high time resolution (~ 0.1 s) with the 11-m Southern African Large Telescope, at the ends of two normal outbursts and one superoutburst of the dwarf nova VW Hyi. All of these contain at least some Dwarf Nova Oscillations (DNOs), which, when at their highest amplitudes, are seen in unprecedented detail. In addition to the expected DNOs with periods > 20 s we find a previously unknown modulation at 13.39 s, but none at shorter periods. The various DNOs and their interaction with the longer period Quasi-periodic Oscillations are interpreted in terms of the model of magnetically controlled flow from an accretion disc proposed earlier in this series of papers. Our observations include rare DNOs very late in outburst; we find that the fundamental period does not increase beyond ~ 90 s, which is the same value that the independent ``longer period DNOs converge on.
We present Roche tomograms of the G5-G8 IV/V secondary star in the long-period cataclysmic variable BV Cen reconstructed from MIKE echelle data taken on the Magellan Clay 6.5-m telescope. The tomograms show the presence of a number of large, cool starspots on BV Cen for the first time. In particular, we find a large high-latitude spot which is deflected from the rotational axis in the same direction as seen on the K3-K5 IV/V secondary star in the cataclysmic variable AE Aqr. BV Cen also shows a similar relative paucity of spots at latitudes between 40-50 degrees when compared with AE Aqr. Furthermore, we find evidence for an increased spot coverage around longitudes facing the white dwarf which supports models invoking starspots at the L1 point to explain the low-states observed in some cataclysmic variables. In total, we estimate that some 25 per cent of the northern hemisphere of BV Cen is spotted. We also find evidence for a faint, narrow, transient emission line with characteristics reminiscent of the peculiar low-velocity emission features observed in some outbursting dwarf novae. We interpret this feature as a slingshot prominence from the secondary star and derive a maximum source size of 75,000 km and a minimum altitude of 160,000 km above the orbital plane for the prominence. The entropy landscape technique was applied to determine the system parameters of BV Cen. We find M_1 = 1.18 (+0.28 -0.16) Msolar, M_2 = 1.05 (+0.23 -0.14) Msolar and an orbital inclination of i = 53 degrees +- 4 degrees at an optimal systemic velocity of gamma = -22.3 km s-1. Finally, we also report on the previously unknown binarity of the G5IV star HD 220492.
The dwarf nova SS Cygni is a close binary star consisting of a K star transferring mass to a white dwarf by way of an accretion disk. We have obtained new spectroscopic observations of SS Cyg with the Hobby-Eberly Telescope (HET). Fits of synthetic spectra for Roche-lobe-filling stars to the absorption-line spectrum of the K star yield the amplitude of the K stars radial velocity curve and the mass ratio: K_{K} = 162.5 +/- 1.0 km/s and q= M_{K} /M_{wd} = 0.685 +/- 0.015. The fits also show that the accretion disk and white dwarf contribute a fraction f = 0.535 +/- 0.075 of the total flux at 5500 angstroms. Taking the weighted average of our results with previously published results obtained using similar techniques, we find <K_{K}> = 163.7 +/- 0.7 km/s and <q> = 0.683 +/- 0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations we limit the orbital inclination to the range 45 deg. <= i <= 56 deg. The derived masses of the K star and white dwarf are M_{K} = 0.55 +/- 0.13 M_sun and M_{wd} = 0.81 +/- 0.19 M_sun, where the uncertainties are dominated by systematic errors in the orbital inclination. The K star in SS Cyg is 10% to 50% larger than an unevolved star with the same mass and thus does not follow the mass-radius relation for Zero-Age Main-Sequence stars; nor does it follow the ZAMS mass/spectral-type relation. Its mass and spectral type are, however, consistent with models in which the core hydrogen has been significantly depleted.
SS Cyg has long been recognized as the prototype of a group of dwarf novae that show only outbursts. However, this object has entered a quite anomalous event in 2021, which at first appeared to be standstill, i.e., an almost constant luminosity state, observed in Z Cam-type dwarf novae. This unexpected event gives us a great opportunity to reconsider the nature of standstill in cataclysmic variables. We have observed this anomalous event and its forerunner, a gradual and simultaneous increase in the optical and X-ray flux during quiescence, through many optical telescopes and the X-ray telescopes NICER and NuSTAR. We have not found any amplification of the orbital hump during quiescence before the anomalous event, which suggests that the mass transfer rate did not significantly fluctuate on average. The estimated X-ray flux was not enough to explain the increment of the optical flux during quiescence via X-ray irradiation of the disk and the secondary star. It would be natural to consider that viscosity in the quiescent disk was enhanced before the anomalous event, which increased mass accretion rates in the disk and raised not only the optical flux but also the X-ray flux. We suggest that enhanced viscosity also triggered the standstill-like phenomenon in SS Cyg, which is considered to be a series of small outbursts. The inner part of the disk would always stay in the outburst state and only its outer part would be unstable against the thermal-viscous instability during this phenomenon, which is consistent with the observed optical color variations. This scenario is in line with our X-ray spectral analyses which imply that the X-ray emitting inner accretion flow became hotter than usual and vertically expanded and that it became denser and was cooled down after the onset of the standstill-like state.