Do you want to publish a course? Click here

Observations in the 1.3 and 1.5 THz Atmospheric Windows with the Receiver Lab Telescope

116   0   0.0 ( 0 )
 Added by Daniel Marrone
 Publication date 2005
  fields Physics
and research's language is English
 Authors D. P. Marrone




Ask ChatGPT about the research

The Receiver Lab Telescope (RLT) is a ground-based terahertz telescope; it is currently the only instrument producing astronomical data between 1 and 2 THz. The capabilities of the RLT have been expanding since observations began in late 2002. Initial observations were limited to the 850 GHz and 1.03 THz windows due to the availability of solid state local oscillators. In the last year we have begun observations with new local oscillators for the 1.3 and 1.5 THz atmospheric windows. These oscillators provide access to the 11-10 and 13-12 lines of CO at 1.267 and 1.497 THz, as well as the [N II] line at 1.461 THz. We report on our first measurements of these high CO transitions, which represent the highest-frequency detections ever made from the ground. We also present initial observations of [N II] and discuss the implications of this non-detection for the standard estimates of the strength of this line.



rate research

Read More

The THz atmospheric windows centered at roughly 1.3 and 1.5~THz, contain numerous spectral lines of astronomical importance, including three high-J CO lines, the N+ line at 205 microns, and the ground transition of para-H2D+. The CO lines are tracers of hot (several 100K), dense gas; N+ is a cooling line of diffuse, ionized gas; the H2D+ line is a non-depleting tracer of cold (~20K), dense gas. As the THz lines benefit the study of diverse phenomena (from high-mass star-forming regions to the WIM to cold prestellar cores), we have built the CO N+ Deuterium Observations Receiver (CONDOR) to further explore the THz windows by ground-based observations. CONDOR was designed to be used at the Atacama Pathfinder EXperiment (APEX) and Stratospheric Observatory For Infrared Astronomy (SOFIA). CONDOR was installed at the APEX telescope and test observations were made to characterize the instrument. The combination of CONDOR on APEX successfully detected THz radiation from astronomical sources. CONDOR operated with typical Trec=1600K and spectral Allan variance times of 30s. CONDORs first light observations of CO 13-12 emission from the hot core Orion FIR4 (= OMC1 South) revealed a narrow line with T(MB) = 210K and delta(V)=5.4km/s. A search for N+ emission from the ionization front of the Orion Bar resulted in a non-detection. The successful deployment of CONDOR at APEX demonstrates the potential for making observations at THz frequencies from ground-based facilities.
107 - Simon Johnston , C. Sobey , S. Dai 2021
The major programme for observing young, non-recycled pulsars with the Parkes telescope has transitioned from a narrow-band system to an ultra-wideband system capable of observing between 704 and 4032 MHz. We report here on the initial two years of observations with this receiver. Results include dispersion measure (DM) and Faraday rotation measure (RM) variability with time, determined with higher precision than hitherto, flux density measurements and the discovery of several nulling and mode changing pulsars. PSR J1703-4851 is shown to be one of a small subclass of pulsars that has a weak and a strong mode which alternate rapidly in time. PSR J1114-6100 has the fourth highest |RM| of any known pulsar despite its location far from the Galactic Centre. PSR J1825-1446 shows variations in both DM and RM likely due to its motion behind a foreground supernova remnant.
Stellar population studies in the infrared (IR) wavelength range have two main advantages with respect to the optical regime: they probe different populations, because most of the light in the IR comes from redder and generally older stars, and they allow us to see through dust because IR light is less affected by extinction. Unfortunately, IR modeling work was halted by the lack of adequate stellar libraries, but this has changed in the recent years. Our project investigates the sensitivity of various spectral features in the 1--5,$mu$m wavelength range to the physical properties of stars ($T_{eff}$, [Fe/H], log g and aims to objectively define spectral indices that can characterize the age and metallicity of unresolved stellar populations. We implemented a method that uses derivatives of the indices as functions of $T_{eff}$, [Fe/H] or log g across the entire available wavelength range to reveal the most sensitive indices to these parameters and the ranges in which these indices work. Here, we complement the previous work in the I and K bands, reporting a new system of 14, 12, 22, and 12 indices for Y, J, H, and L atmospheric windows, respectively, and describe their behavior. Our analysis indicates that features sensitive to the effective temperature are present and measurable in all the investigated atmospheric windows at the spectral resolution and in the metallicity range of the IRTF library for a signal-to-noise ratio greater than 20-30. The surface gravity is more challenging and only indices in the H and J windows are best suited for this. The metallicity range of the stars with available spectra is too narrow to search for suitable diagnostics. For the spectra of unresolved galaxies, the defined indices are valuable tools in tracing the properties of the stars in the IR-dominant stellar populations.
Context. High-contrast imaging is currently the only available technique for the study of the thermodynamical and compositional properties of exoplanets in long-period orbits. The SPICES project is a coronagraphic space telescope dedicated to the spectro-polarimetric analysis of gaseous and icy giant planets as well as super-Earths at visible wavelengths. So far, studies for high-contrast imaging instruments have mainly focused on technical feasibility because of the challenging planet/star flux ratio of 10-8-10-10 required at short separations (200 mas or so) to image cold exoplanets. However, the analysis of planet atmospheric/surface properties has remained largely unexplored. Aims. The aim of this paper is to determine which planetary properties SPICES or an equivalent direct imaging mission can measure, considering realistic reflected planet spectra and instrument limitation. Methods. We use numerical simulations of the SPICES instrument concept and theoretical planet spectra to carry out this performance study. Results. We find that the characterization of the main planetary properties (identification of molecules, effect of metallicity, presence of clouds and type of surfaces) would require a median signal-to-noise ratio of at least 30. In the case of a solar-type star leq 10 pc, SPICES will be able to study Jupiters and Neptunes up to ~5 and ~2 AU respectively. It would also analyze cloud and surface coverage of super-Earths of radius 2.5 RE at 1 AU. Finally, we determine the potential targets in terms of planet separation, radius and distance for several stellar types. For a Sun analog, we show that SPICES could characterize Jupiters (M geq 30 ME) as small as 0.5 Jupiter radii at ~2 AU up to 10 pc, and super-Earths at 1-2 AU for the handful of stars that exist within 4-5 pc. Potentially, SPICES could perform analysis of a hypothetical Earth-size planet around alpha Cen A and B.
We present the results of the photometric multicolor observations of GRB 060526 optical afterglow obtained with Russian-Turkish 1.5-m Telescope (RTT150, Mt. Bakirlitepe, Turkey). The detailed measurements of afterglow light curve, starting from about 5 hours after the GRB and during 5 consecutive nights were done. In addition, upper limits on the fast variability of the afterglow during the first night of observations were obtained and the history of afterglow color variations was measured in detail. In the time interval from 6 to 16 hours after the burst, there is a gradual flux decay, which can be described approximately as a power law with an index of -1.14+-0.02. After that the variability on the time scale delta t < t is observed and the afterglow started to decay faster. The color of the afterglow, V-R=~0.5, is approximately the same during all our observations. The variability is detected on time scales up to delta t/t =~ 0.0055 at Delta F_ u/F_ u =~ 0.3, which violates some constraints on the variability of the observed emission from ultrarelativistic jet obtained by Ioka et al. (2005). We suggest to explain this variability by the fact that the motion of the emitting shell is no longer ultrarelativistic at this time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا