Do you want to publish a course? Click here

Infrared Telescope Facility (IRTF) spectral library II: New indices in Y, J, H, and L atmospheric windows

71   0   0.0 ( 0 )
 Added by Lorenzo Morelli Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar population studies in the infrared (IR) wavelength range have two main advantages with respect to the optical regime: they probe different populations, because most of the light in the IR comes from redder and generally older stars, and they allow us to see through dust because IR light is less affected by extinction. Unfortunately, IR modeling work was halted by the lack of adequate stellar libraries, but this has changed in the recent years. Our project investigates the sensitivity of various spectral features in the 1--5,$mu$m wavelength range to the physical properties of stars ($T_{eff}$, [Fe/H], log g and aims to objectively define spectral indices that can characterize the age and metallicity of unresolved stellar populations. We implemented a method that uses derivatives of the indices as functions of $T_{eff}$, [Fe/H] or log g across the entire available wavelength range to reveal the most sensitive indices to these parameters and the ranges in which these indices work. Here, we complement the previous work in the I and K bands, reporting a new system of 14, 12, 22, and 12 indices for Y, J, H, and L atmospheric windows, respectively, and describe their behavior. Our analysis indicates that features sensitive to the effective temperature are present and measurable in all the investigated atmospheric windows at the spectral resolution and in the metallicity range of the IRTF library for a signal-to-noise ratio greater than 20-30. The surface gravity is more challenging and only indices in the H and J windows are best suited for this. The metallicity range of the stars with available spectra is too narrow to search for suitable diagnostics. For the spectra of unresolved galaxies, the defined indices are valuable tools in tracing the properties of the stars in the IR-dominant stellar populations.



rate research

Read More

We present a 0.8 -5 micron spectral library of 210 cool stars observed at a resolving power of R = lambda / Delta lambda ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra are measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using Two Micron All Sky Survey (2MASS) photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically-obscured regions of galaxies, and synthetic photometry. The library is available in digital form from the IRTF website.
The near-infrared (NIR) wavelength range offers some unique spectral features, and it is less prone to the extinction than the optical one. Recently, the first flux calibrated NIR library of cool stars from the NASA Infrared Telescope Facility (IRTF) have become available, and it has not been fully exploited yet. We want to develop spectroscopic diagnostics for stellar physical parameters based on features in the wavelength range 1-5 micron. In this work we test the technique in the I and K bands. The study of the Y, J, H, and L bands will be presented in the following paper. An objective method for semi-empirical definition of spectral features sensitive to various physical parameters is applied to the spectra. It is based on sensitivity map--i.e., derivative of the flux in the spectra with respect to the stellar parameters at a fixed wavelength. New optimized indices are defined and their equivalent widths (EWs) are measured. A number of sensitive features to the effective temperature and surface gravity are re-identified or newly identified clearly showing the reliability of the sensitivity map analysis. The sensitivity map allows to identify the best bandpass limits for the line and nearby continuum. It reliably predicts the trends of spectral features with respect to a given physical parameter but not their absolute strengths. Line blends are easy to recognize when blended features have different behavior with respect to some physical stellar parameter. The use of sensitivity map is therefore complementary to the use of indices. We give the EWs of the new indices measured for the IRTF star sample. This new and homogeneous set of EWs will be useful for stellar population synthesis models and can be used to get element-by-element abundances for unresolved stellar population studies in galaxies.
394 - Swagat Ranjan Das 2017
Aims. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust and the stellar population associated with the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods. The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density and dust emissivity maps were generated by using modified blackbody fits in the far-infrared wavelength range 160 - 500 {mu}m. Various near- and mid-infrared colour and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results. The radio maps reveal the presence diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to ZAMS spectral types in the range O7.5V - O7V and O8.5V - O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimetre image shows the presence of two additional clumps one being associated with G346.056-0.021. The masses of the clumps are estimated to range between {sim} 1400 to 15250 M{sun}. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model.
Integrated light spectroscopy from galaxies can be used to study the stellar populations that cannot be resolved into individual stars. This analysis relies on stellar population synthesis (SPS) techniques to study the formation history and structure of galaxies. However, the spectral templates available for SPS are limited, especially in the near-infrared. We present A-LIST (APOGEE Library of Infrared SSP Templates), a new set of high-resolution, near-IR SSP spectral templates spanning a wide range of ages (2-12 Gyr), metallicities ($rm -2.2 < [M/H] < +0.4$) and $alpha$ abundances ($rm -0.2 < [alpha/M] < +0.4$). This set of SSP templates is the highest resolution ($Rsim22500$) available in the near infrared, and the first such based on an empirical stellar library. Our models are generated using spectra of $sim$300,000 stars spread across the Milky Way, with a wide range of metallicities and abundances, from the APOGEE survey. We show that our model spectra provide accurate fits to M31 globular cluster spectra taken with APOGEE, with best-fit metallicities agreeing with those of previous estimates to within $sim$0.1 dex. We also compare these model spectra to lower-resolution E-MILES models and demonstrate that we recover the ages of these models to within $sim$1.5 Gyr. This library is available in https://github.com/aishashok/ALIST-library.
Context. HD13724 is a nearby solar-type star at 43.48 $pm$ 0.06 pc hosting a long-period low-mass brown dwarf detected with the CORALIE echelle spectrograph as part of the historical CORALIE radial-velocity search for extra-solar planets. The companion has a minimum mass of $26.77^{+4.4}_{-2.2} M_{mathrm{Jup}}$ and an expected semi-major axis of $sim$ 240 mas making it a suitable target for further characterisation with high-contrast imaging, in particular to measure its inclination, mass, and spectrum and thus establish its substellar nature. Aims. Using high-contrast imaging with the SPHERE instrument on the Very Large Telescope (VLT), we are able to directly image a brown dwarf companion to HD13724 and obtain a low-resolution spectrum. Methods. We combine the radial-velocity measurements of CORALIE and HARPS taken over two decades and high contrast imaging from SPHERE to obtain a dynamical mass estimate. From the SPHERE data we obtain a low resolution spectrum of the companion from Y to J band, as well as photometric measurements from IRDIS in the J, H and K bands. Results. Using high-contrast imaging with the SPHERE instrument at the VLT, we report the first images of a brown dwarf companion to the host star HD13724. It has an angular separation of 175.6 $pm$ 4.5 mas and H-band contrast of $10.61pm0.16$ mag and, using the age estimate of the star to be $sim$1 Gyr, gives an isochronal mass estimate of $sim$44 $M_{mathrm{Jup}}$. By combining radial-velocity and imaging data we also obtain a dynamical mass of $50.5^{+3.3}_{-3.5} M_{mathrm{Jup}}$. Through fitting an atmospheric model, we estimate a surface gravity of $log g = 5.5$ and an effective temperature of 1000K. A comparison of its spectrum with observed T dwarfs estimates a spectral type of T4 or T4.5, with a T4 object providing the best fit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا