Do you want to publish a course? Click here

The Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts

94   0   0.0 ( 0 )
 Added by Edo Berger
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical, near-IR, and radio follow up of sixteen Swift bursts, including our discovery of nine afterglows and a redshift determination for three. These observations, supplemented by data from the literature, provide an afterglow recovery rate of 60% in the optical/near-IR, much higher than in previous missions (BeppoSAX, HETE-2, INTEGRAL, and IPN). The optical/near-IR afterglows of Swift events are on average 1.7 mag fainter at t=12 hr than those of previous missions. The X-ray afterglows are similarly fainter compared to those of pre-Swift bursts. In the radio the limiting factor is the VLA threshold and the detection rate for Swift bursts is similar to that for past missions. The redshift distribution of pre-Swift bursts peaked at z~1, whereas the five Swift bursts with measured redshifts are distributed evenly between 1.3 and 3.2. From these results we conclude that (i) the pre-Swift distributions were biased in favor of bright events and low redshift events, (ii) the higher sensitivity and accurate positions of Swift result in a better representation of the true burst redshift and brightness distributions (which are higher and dimmer, respectively), and (iii) as many as 1/3 of the bursts can be optically dark, as a result of a high redshift and/or dust extinction. We remark that the apparent lack of low redshift, low luminosity Swift bursts, and the lower event rate compared to pre-launch estimates (90 vs. 150 per year), are the result of a threshold that is similar to that of BATSE. In view of these inferences, afterglow observers may find it advisable to make significant changes in follow up strategies of Swift events. [abridged]



rate research

Read More

Until 6 October 2005 sixteen redshifts have been measured of long gamma-ray bursts discovered by the Swift satellite. Further 45 redshifts have been measured of the long gamma-ray bursts discovered by other satellites. Here we perform five statistical tests comparing the redshift distributions of these two samples assuming - as the null hypothesis - identical distribution for the two samples. Three tests (Students $t$-test, Mann-Whitney test, Kolmogorov-Smirnov test) reject the null hypothesis on the significance levels between 97.19 and 98.55%. Two different comparisons of the medians show extreme $(99.78-99.99994)$% significance levels of rejection. This means that the redshifts of the Swift sample and the redshifts of the non-Swift sample are distributed differently - in the Swift sample the redshifts are on average larger. This statistical result suggests that the long GRBs should on average be at the higher redshifts of the Swift sample.
308 - B. Gendre 2004
We present a set of seventeen Gamma-Ray Bursts (GRBs) with known redshifts and X-ray afterglow emission. We apply cosmological corrections in order to compare their fluxes normalized at a redshift of 1. Two classes of GRB can be defined using their X-ray afterglow light curves. We show that the brightest afterglows seem to decay faster than the dimer ones. We also point out evidences for a possible flux limit of the X-ray afterglow depending on the time elapsed since the burst. We try to interpret these observations in the framework of the canonical fireball model of GRB afterglow emission.
GRBs are now detected up to z = 8.26 . We try to find differences, in their restframe properties, which could be related either to distance or to observing conditions.
125 - D. A. Kann , S. Klose , B. Zhang 2010
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to September 2009, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z=1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, is weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) are very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at one day after the GRB in the z=1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without reveals no indication that the former are statistically significantly more luminous. (abridged)
68 - Luigi Piro 2004
I will review the constraints set by X-ray measurements of afterglows on several issues of GRB, with particular regard to the fireball model, the environment, the progenitor and dark GRB.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا