Do you want to publish a course? Click here

The Proper Motion of the Magellanic Clouds: The UCAC2-Hipparcos Inconsistency

108   0   0.0 ( 0 )
 Added by Simone Zaggia R.
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the USNO CCD Astrograph all-sky Catalog (UCAC2), we measure the mean proper motion of the two Magellanic Clouds. Appropriately selected LMC populations show a proper motion (<mu RA>, <mu DEC>) ~ (+0.84,+4.32) that is significantly higher, in <mu DEC>, than currently accepted Hipparcos-like values, <mu RA>, <mu DEC> ~ (+1.94,-0.14). A higher <mu RA> value is also found for the SMC. Interestingly, the mean UCAC2 LMC proper motion agrees very well with the only work in the literature (Anguita et al. 2000) pointing to an unbound Magellanic Clouds-Milky Way interaction. Nonetheless, the implications of the UCAC2 proper motion are hard to reconcile with our present day understanding of the Clouds-Galaxy interaction unless one assumes a more massive Milky Way. Consequently, although no sources of systematic error have been identified, it is perhaps most likely that the UCAC2 catalog has an as yet unidentified systematic error resulting in an inconsistency between UCAC2 and Hipparcos based results for the Magellanic Clouds.



rate research

Read More

We present a Catalog of high proper motion (HPM) stars detected in the foreground of central parts of the Magellanic Clouds. The Catalog contains 2161 objects in the 4.5 square degree area towards the LMC, and 892 HPM stars in the 2.4 square degree area towards the SMC. The Catalog is based on observations collected during four years of the OGLE-II microlensing survey. The Difference Image Analysis (DIA) of the images provided candidate HPM stars with proper motion as small as 4 mas/yr. These appeared as pseudo-variables, and were all measured astrometrically on all CCD images, providing typically about 400 data points per star. The reference frame was defined by the majority of background stars, most of them members of the Magellanic Clouds. The reflex motion due to solar velocity with respect to the local standards of rest is clearly seen. The largest proper motion in our sample is 363 mas/yr. Parallaxes were measured with errors smaller than 20% for several stars.
The Magellanic Clouds are a nearby pair of interacting dwarf galaxies and satellites of the Milky Way. Studying their kinematic properties is essential to understanding their origin and dynamical evolution. They have prominent tidal features and the kinematics of these features can give hints about the formation of tidal dwarfs, galaxy merging and the stripping of gas. In addition they are an example of dwarf galaxies that are in the process of merging with a massive galaxy. The goal of this study is to investigate the kinematics of the Magellanic Bridge, a tidal feature connecting the Magellanic Clouds, using stellar proper motions to understand their most recent interaction. We calculated proper motions based on multi-epoch $K_{s}$-band aperture photometry, which were obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA), spanning a time of 1-3 yr, and we compared them with $Gaia$ Data Release 2 (DR2) proper motions. We tested two methods for removing Milky Way foreground stars using $Gaia$~DR2 parallaxes in combination with VISTA photometry or using distances based on Bayesian inference. We obtained proper motions for a total of 576,411 unique sources over an area of $23$ deg$^{2}$ covering the Magellanic Bridge including mainly Milky Way foreground stars, background galaxies, and a small population of possible Magellanic Bridge stars ($<$15,000). The first proper motion measurement of the Magellanic Bridge centre is $1.80pm0.25$ mas yr$^{-1}$ in right ascension and $-0.72pm0.13$ mas yr$^{-1}$ in declination. The proper motion measurements confirm a flow motion from the Small to the Large Magellanic Cloud. This flow can now be measured all across the entire length of the Magellanic Bridge. Our measurements indicate that the Magellanic Bridge is stretching.
We present a measurement of the systemic proper motion of the Large Magellanic Cloud (LMC) from astrometry with the High Resolution Camera (HRC) of the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). We observed LMC fields centered on 21 background QSOs that were discovered from their optical variability in the MACHO database. The QSOs are distributed homogeneously behind the central few degrees of the LMC. With 2 epochs of HRC data and a ~2 year baseline we determine the proper motion of the LMC to better than 5% accuracy: mu_W = -2.03 +/- 0.08 mas/yr; mu_N = 0.44 +/- 0.05 mas/yr. This is the most accurate proper motion measurement for any Milky Way satellite thus far. When combined with HI data from the Magellanic Stream this should provide new constraints on both the mass distribution of the Galactic Halo and models of the Stream.
(abridged) The Hundred-Thousand-Proper-Motion (HTPM) project will determine the proper motions of ~113500 stars using a 23-year baseline. The proper motions will use the Hipparcos data, with epoch 1991.25, as first epoch and the first intermediate-release Gaia astrometry, with epoch ~2014.5, as second epoch. The expected HTPM proper-motion standard errors are 30-190 muas/yr, depending on stellar magnitude. Depending on the characteristics of an object, in particular its distance and velocity, its radial velocity can have a significant impact on the determination of its proper motion. The impact of this perspective acceleration is largest for fast-moving, nearby stars. Our goal is to determine, for each star in the Hipparcos catalogue, the radial-velocity standard error that is required to guarantee a negligible contribution of perspective acceleration to the HTPM proper-motion precision. We employ two evaluation criteria, both based on Monte-Carlo simulations, with which we determine which stars need to be spectroscopically (re-)measured. Both criteria take the Hipparcos measurement errors into account. For each star in the Hipparcos catalogue, we determine the confidence level with which the available radial velocity and its standard error, taken from the XHIP compilation catalogue, are acceptable. We find that for 97 stars, the radial velocities available in the literature are insufficiently precise for a 68.27% confidence level. We also identify 109 stars for which radial velocities are currently unknown yet need to be acquired to meet the 68.27% confidence level. To satisfy the radial-velocity requirements coming from our study will be a daunting task consuming a significant amount of spectroscopic telescope time. Fortunately, the follow-up spectroscopy is not time-critical since the HTPM proper motions can be corrected a posteriori once (improved) radial velocities become available.
We use the Gaia data release 1 (DR1) to study the proper motion (PM) fields of the Large and Small Magellanic Clouds (LMC, SMC). This uses the Tycho-Gaia Astrometric Solution (TGAS) PMs for 29 Hipparcos stars in the LMC and 8 in the SMC. The LMC PM in the West and North directions is inferred to be $(mu_W,mu_N) = (-1.872 pm 0.045, 0.224 pm 0.054)$ mas/yr, and the SMC PM $(mu_W,mu_N) = (-0.874 pm 0.066, -1.229 pm 0.047)$ mas/yr. These results have similar accuracy and agree to within the uncertainties with existing Hubble Space Telescope (HST) PM measurements. Since TGAS uses different methods with different systematics, this provides an external validation of both data sets and their underlying approaches. Residual DR1 systematics may affect the TGAS results, but the HST agreement implies this must be below the random errors. Also in agreement with prior HST studies, the TGAS LMC PM field clearly shows the clockwise rotation of the disk, even though it takes the LMC disk in excess of $10^8$ years to complete one revolution. The implied rotation curve amplitude for young LMC stars is consistent with that inferred from line-of-sight (LOS) velocity measurements. Comparison of the PM and LOS rotation curves implies a kinematic LMC distance modulus $m-M = 18.54 pm 0.39$, consistent but not yet competitive with photometric methods. These first results from Gaia on the topic of Local Group dynamics provide an indication of how its future data releases will revolutionize this field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا