Do you want to publish a course? Click here

The discovery of an extreme jet in Rosette that shedding light on the formation of free-floating brown dwarfs and giant planets

71   0   0.0 ( 0 )
 Added by Jinzeng Li
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of an optical jet with a striking morphology in the Rosette Nebula. It could be the most extreme case known of an accretion disk and jet system directly exposed to strong ionization fields that impose strong effects on its disk evolution. Unlike typical optical flows, this jet system is found to have a high excitation nature mainly due to disruptive interaction with the violent environment. As a result, the extension of the highly-collimated jet and possible former episodes of the degenerated counterjet all show bow-shocked structures. Our results provide implications on how incipience of massive stars in giant molecular clouds prevents further generations of low-mass star formation, and offers an evolutionary solution on how isolated substellar/planetary mass objects in regions of massive star formation are formed.



rate research

Read More

This White Paper describes the opportunities for discovery of Jupiter-mass objects with 300K atmospheres. The discovery and characterization of such cold objects is vital for understanding the low-mass terminus of the initial mass function and for optimizing the study of exoplanets by the next generation of large telescopes, space probes and space missions.
Context: We studied numerically the formation of giant planet (GP) and brown dwarf (BD) embryos in gravitationally unstable protostellar disks and compared our findings with directly-imaged, wide-orbit (>= 50 AU) companions known to-date. The viability of the disk fragmentation scenario for the formation of wide-orbit companions in protostellar disks around (sub-)solar mass stars was investigated. Methods: We used numerical hydrodynamics simulations of disk formation and evolution with an accurate treatment of disk thermodynamics. The use of the thin-disk limit allowed us to probe the long-term evolution of protostellar disks. We focused on models that produced wide-orbit GP/BD embryos, which opened a gap in the disk and showed radial migration timescales similar to or longer than the typical disk lifetime. Results: While disk fragmentation was seen in the majority of our models, only 6 models out of 60 revealed the formation of quasi-stable, wide-orbit GP/BD embryos. Disk fragmentation produced GP/BD embryos with masses in the 3.5-43 M_J range, covering the whole mass spectrum of directly-imaged, wide-orbit companions to (sub-)solar mass stars. On the other hand, our modelling failed to produce embryos on orbital distances <= 170 AU, whereas several directly-imaged companions were found at smaller orbits down to a few AU. Disk fragmentation also failed to produce wide-orbit companions around stars with mass <= 0.7 Msun, in disagreement with observations. Conclusions: Disk fragmentation is unlikely to explain the whole observed spectrum of wide-orbit companions to (sub-)solar-mass stars and other formation mechanisms, e.g., dynamical scattering of closely-packed companions onto wide orbits, should be invoked to account for companions at orbital distance from a few tens to approx 150 AU and wide-orbit companions with masses of the host star <= 0.7 Msun. (abridged)
We describe the results of a very deep imaging survey of the Trapezium Cluster in the IJH bands, using the UKIRT high resolution camera UFTI. Approximately 32% of the 515 point sources detected are brown dwarf candidates, including several free floating objects with masses below the Deuterium burning (planetary) threshold at 0.013 solar masses, which are detectable because of their extreme youth. We have confidence that almost all the sources detected are cluster members, since foreground contamination is minimal in the 33 arcmin^2 area surveyed and the dense backdrop of OMC-1 obscures all background stars at these wavelengths. Extinction is calculated from the (J-H)colours, permitting accurate luminosity estimates and temperatures are derived from the dereddened (I-J) colours. There is some evidence for a cut-off in the luminosity function below the level corresponding to several Jupiter masses, which may represent the bottom end of the IMF. Since star formation is complete in the Trapezium this limit could have wide significance, if confirmed. However, it could well be an effect of the dispersal of the molecular cloud by the central O-type stars, a process whose timescale will vary between star formation regions.
Brown dwarfs are essential targets for understanding planetary and sub-stellar atmospheres across a wide range of thermal and chemical conditions. As surveys continue to probe ever deeper, and as observing capabilities continue to improve, the number of known Y dwarfs -- the coldest class of sub-stellar objects, with effective temperatures below about 600 K -- is rapidly growing. Critically, this class of ultra-cool objects has atmospheric conditions that overlap with Solar System worlds and, as a result, tools and ideas developed from studying Earth, Jupiter, Saturn and other nearby worlds are well-suited for application to sub-stellar atmospheres. To that end, we developed a one-dimensional (vertical) atmospheric structure model for ultra-cool objects that includes moist adiabatic convection, as this is an important process for many Solar System planets. Application of this model across a range of effective temperatures (350, 300, 250, 200 K), metallicities ([M/H] of 0.0, 0.5, 0.7, 1.5), and gravities (log $g$ of 4.0, 4.5, 4.7, 5.0) demonstrates strong impacts of water latent heat release on simulated temperature-pressure profiles. At the highest metallicities, water vapor mixing ratios reach an Earth-like 3%, with associated major alterations to the thermal structure in the atmospheric regions where water condenses. Spectroscopic and photometric signatures of metallicity and moist convection should be readily detectable at near- and mid-infrared wavelengths, especially with James Webb Space Telescope observations, and can help indicate the formation history of an object.
The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are variously thought to be driven by differential radiative heating of the upper atmosphere or by intrinsic heat fluxes emanating from the deep interior. But existing models cannot account for the different flow configurations on the giant planets in an energetically consistent manner. Here a three-dimensional general circulation model is used to show that the different flow configurations can be reproduced by mechanisms universal across the giant planets if differences in their radiative heating and intrinsic heat fluxes are taken into account. Whether the equatorial jet is prograde or retrograde depends on whether the deep intrinsic heat fluxes are strong enough that convection penetrates into the upper troposphere and generates strong equatorial Rossby waves there. Prograde equatorial jets result if convective Rossby wave generation is strong and low-latitude angular momentum flux divergence owing to baroclinic eddies generated off the equator is sufficiently weak (Jupiter and Saturn). Retrograde equatorial jets result if either convective Rossby wave generation is weak or absent (Uranus) or low-latitude angular momentum flux divergence owing to baroclinic eddies is sufficiently strong (Neptune). The different speeds and widths of the off-equatorial jets depend, among other factors, on the differential radiative heating of the atmosphere and the altitude of the jets, which are vertically sheared. The simulations have closed energy and angular momentum balances that are consistent with observations of the giant planets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا