No Arabic abstract
Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. While radio astronomy has an impressive record of obtaining high time resolution observations, usually it is achieved in quite narrow fields-of-view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X- and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a new transient source, GCRT J1745-3009, detected in 2002 during a moderately wide-field radio transient monitoring program of the Galactic center (GC) region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the GC, its brightness temperature (~10^16 K) and the implied energy density within GCRT J1745-3009 vastly exceeds that observed in most other classes of radio astronomical sources, and is consistent with coherent emission processes rarely observed. We conclude that GCRT J1745-3009 is the first member of a new class of radio transient sources, the first of possibly many new classes to be identified through current and upcoming radio surveys.
Observations by the H.E.S.S. system of imaging atmospheric Cherenkov telescopes provide the most sensitive measurements of the Galactic Centre region in the energy range 150 GeV - 30 TeV. The vicinity of the kinetic centre of our galaxy harbours numerous objects which could potentially accelerate particles to very high energies (VHE, > 100 GeV) and thus produce the Gamma-ray flux observed. Within statistical and systematic errors, the centroid of the point-like emission measured by H.E.S.S. was found to be in good agreement with the position of the supermassive black hole Sgr A* and the recently discovered PWN candidate G359.95-0.04. Given a systematic pointing error of about 30, a possible association with the SNR Sgr A East could not be ruled out with the 2004 H.E.S.S. data. In this contribution an update is given on the position of the H.E.S.S. Galactic Centre source using 2005/2006 data. The systematic pointing error is reduced to 6 per axis using guiding telescopes for pointing corrections, making it possible to exclude with high significance Sgr A East as the source of the VHE Gamma-Rays.
GCRT J1745-3009 is a transient bursting radio source located in the direction of the Galactic center, discovered in 330 MHz VLA observations from 2002 September 30--October 1 by Hyman et al. We have searched for bursting activity from GCRT J1745-3009 in nearly all of the available 330 MHz VLA observations of the Galactic center since 1989 as well as in 2003 GMRT observations. We report a new radio detection of the source in 330 MHz GMRT data taken on 2003 September 28. A single ~0.5 Jy burst was detected, approximately 3x weaker than the five bursts detected in 2002. Due to the sparse sampling of the 2003 observation, only the decay portion of a single burst was detected. We present additional evidence indicating that this burst is an isolated one, but we cannot completely rule out additional undetected bursts that may have occured with the same ~77 min. periodicity observed in 2002 or with a different periodicity. Assuming the peak emission was detected, the decay time of the burst, ~2 min, is consistent with that determined for the 2002 bursts. Based on the total time for which we have observations, we estimate that the source has a duty cycle of roughly 10%.
The radio sky is poorly sampled for rapidly varying transients because of the narrow field-of-view of most imaging radio telescopes at cm and shorter wavelengths. The emergence of sensitive long wavelength observations with intrinsically larger fields-of-view are changing this situation, as partly illustrated by our ongoing meter-wavelength monitoring observations and archival studies of the Galactic Center. In this search, we discovered a transient, bursting, radio source in the direction of the Galactic Center, GCRT J1745-3009, with extremely unusual properties. Its flux and rapid variability imply a brightness temperature >10^12 K if it is at a distance >70 pc, implying that it is a coherent emitter. I will discuss the discovery of the source and the subsequent re-detections, as well as searches for counterparts at other wavelengths, and several proposed models.
To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A*. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ~ 16-33 microgauss; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (~ 12 degrees). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths >~ 100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.
Recent analyses of the anisotropy of cosmic rays at $10^{18}$ eV (the AGASA and SUGAR data) show significant excesses from regions close to the Galactic Centre and Cygnus. Our aim is to check whether such anisotropies can be caused by single sources of charged particles. We investigate propagation of protons in two models of the Galactic regular magnetic field (with the irregular component included) assuming that the particles are injected by a short lived discrete source lying in the direction of the Galactic Centre. We show that apart from a prompt image of the source, the regular magnetic field may cause delayed images at quite large angular distances from the actual source direction. The image is strongly dependent on the time elapsed after ejection of particles and it is also very sensitive to their energy. For the most favourable conditions for particle acceleration by a young pulsar the predicted fluxes are two to four order of magnitudes higher than that observed. The particular numbers depend strongly on the Galactic magnetic field model adopted but it looks that a single pulsar in the Galactic Centre could be responsible for the observed excess.