No Arabic abstract
We present the results of a monitoring campaign of three eclipsing high-mass X-ray binaries (HMXBs: SMC X-1, LMC X-4 and Cen X-3). High-resolution VLT/UVES spectra are used to measure the radial velocities of these systems with high accuracy. We show that the subsequent mass determination of the neutron stars in these systems is significantly improved and discuss the implications of this result.
The distribution of masses for neutron stars is analyzed using the Bayesian statistical inference, evaluating the likelihood of proposed gaussian peaks by using fifty-four measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around $1.37 {M_{odot}}$, and a much wider second peak at $1.73 {M_{odot}}$. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to label the systems has been made here), and argues against the single-mass scale viewpoint. The bimodal distribution can also accommodate the recent findings of $sim M_{odot}$ masses quite naturally. Finally, we explore the existence of a subgroup around $1.25 {M_{odot}}$, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to $O-Mg-Ne$ core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.
The discovery of two neutron star-black hole coalescences by LIGO and Virgo brings the total number of likely neutron stars observed in gravitational waves to six. We perform the first inference of the mass distribution of this extragalactic population of neutron stars. In contrast to the bimodal Galactic population detected primarily as radio pulsars, the masses of neutron stars in gravitational-wave binaries are thus far consistent with a uniform distribution, with a greater prevalence of high-mass neutron stars. The maximum mass in the gravitational-wave population agrees with that inferred from the neutron stars in our Galaxy and with expectations from dense matter.
We investigate remnant neutron star masses (in particular, the minimum allowed mass) by performing advanced stellar evolution calculations and neutrino-radiation hydrodynamics simulations for core-collapse supernova explosions. We find that, based on standard astrophysical scenarios, low-mass carbon-oxygen cores can have sufficiently massive iron cores that eventually collapse, explode as supernovae, and give rise to remnant neutron stars that have a minimum mass of 1.17 M$_odot$ --- compatible with the lowest mass of the neutron star precisely measured in a binary system of PSR J0453+1559.
Extremely metal-poor stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in extremely metal-poor stars are representative of their natal gas cloud composition. For this reason, the chemistry of extremely metal-poor stars closely reflects the nucleosynthetic yields of supernovae from massive Population III stars. Here we collate detailed abundances of 53 extremely metal-poor stars from the literature and infer the masses of their Population III progenitors. We fit a simple initial mass function to a subset of 29 of theinferred Population III star masses, and find that the mass distribution is well-represented by a power law IMF with exponent $alpha = 2.35^{+0.29}_{-0.24}$. The inferred maximum progenitor mass for supernovae from massive Population III stars is $M_{rm{max}} = 87^{+13}_{-33}$ M$_odot$, and we find no evidence in our sample for a contribution from stars with masses above $sim$120 M$_odot$. The minimum mass is strongly consistent with the theoretical lower mass limit for Population III supernovae. We conclude that the IMF for massive Population III stars is consistent with the initial mass function of present-day massive stars and there may well have formed stars much below the supernova mass limit that could have survived to the present day.
Observations have indicated that we do not see neutron stars (NS) of mass near the theoretical upper limit as predicted. Here we invoke the role of dark matter (DM) particles in star formation, and their role in lowering the mass of remnants eventually formed from these stars. Massive stars can capture DM particles more effectively than the lower mass stars, thus further softening the equation of state of neutron star. We also look at the capture of DM particles by the NS, which could further soften the upper mass limit of NS. The admixture of DM particles would be higher at earlier epochs (high z).