No Arabic abstract
Using estimates of the distance and proper motion of Geminga and the constraints on its radial velocity posed by the shape of its bow shock, we investigate its birth place by tracing its space motion backwards in time. Our results exclude the lambda Ori association as the origin site because of the large distance between both objects at any time. Our simulations place the birth region at approximately 90-240 pc from the Sun, between 197 degrees and 199 degrees in Galactic longitude and -16 degrees and -8 degrees in latitude, most probably inside the Cas-Tau OB association or the Ori OB1a association. We discard the possibility of the progenitor being a massive field star. The association of Geminga with either stellar association implies an upper limit of M = 15 Msun for the mass of its progenitor. We also propose new members for the Cas-Tau and Ori OB1 associations.
We report our attempts to locate the progenitor of the peculiar type Ic SN 2007gr in HST pre-explosion images of the host galaxy, NGC 1058. Aligning adaptive optics Altair/NIRI imaging of SN 2007gr from the Gemini (North) Telescope with the pre-explosion HST WFPC2 images, we identify the SN position on the HST frames with an accuracy of 20 mas. Although nothing is detected at the SN position we show that it lies on the edge of a bright source, 134+/-23 mas (6.9 pc) from its nominal centre. Based on its luminosity we suggest that this object is possibly an unresolved, compact and coeval cluster and that the SN progenitor was a cluster member, although we note that model profile fitting favours a single bright star. We find two solutions for the age of this assumed cluster; 7-/+0.5 Myrs and 20-30 Myrs, with turn-off masses of 28+/-4 Msun and 12-9 Msun respectively. Pre-explosion ground-based K-band images marginally favour the younger cluster age/higher turn-off mass. Assuming the SN progenitor was a cluster member, the turn-off mass provides the best estimate for its initial mass. More detailed observations, after the SN has faded, should determine if the progenitor was indeed part of a cluster, and if so allow an age estimate to within ~2 Myrs thereby favouring either a high mass single star or lower mass interacting binary progenitor.
LS 5039 is one of the few X-ray binaries detected at VHE, and potentially contains a young non-accreting pulsar. The outflow of accelerated particles emitting synchrotron emission can be directly mapped with high resolution radio observations. The morphology of the radio emission strongly depends on the properties of the compact object and on the orbital parameters of the binary system. We present VLBA observations of LS 5039 covering an orbital cycle, which show morphological and astrometric variability at mas scales. On the other hand, we discuss the possible association of LS 5039 with the supernova remnant SNR G016.8-01.1.
We use the Bolshoi Simulation to find the most probable location of the Local Group (LG) in the cosmic web. Our LG simulacra are pairs of halos with isolation and kinematic properties consistent with observations. The cosmic web is defined using a tidal tensor approach. We find that the LGs preferred location is regions with a dark matter overdensity close to the cosmic average. This makes filaments and sheets the preferred environment. We also find a strong alignment between the LG and the cosmic web. The orbital angular momentum is preferentially perpendicular to the smallest tidal eigenvector, while the vector connecting the two halos is strongly aligned along the smallest tidal eigenvector and perpendicular to the largest tidal eigenvector; the pair lies and moves along filaments and sheets. We do not find any evidence for an alignment between the spin of each halo in the pair and the cosmic web.
Place recognition is a challenging problem in mobile robotics, especially in unstructured environments or under viewpoint and illumination changes. Most LiDAR-based methods rely on geometrical features to overcome such challenges, as generally scene geometry is invariant to these changes, but tend to affect camera-based solutions significantly. Compared to cameras, however, LiDARs lack the strong and descriptive appearance information that imaging can provide. To combine the benefits of geometry and appearance, we propose coupling the conventional geometric information from the LiDAR with its calibrated intensity return. This strategy extracts extremely useful information in the form of a new descriptor design, coined ISHOT, outperforming popular state-of-art geometric-only descriptors by significant margin in our local descriptor evaluation. To complete the framework, we furthermore develop a probabilistic keypoint voting place recognition algorithm, leveraging the new descriptor and yielding sublinear place recognition performance. The efficacy of our approach is validated in challenging global localization experiments in large-scale built-up and unstructured environments.
The superb spatial resolution of Chandra has allowed us to detect a 20-long tail behind the Geminga pulsar, with a hard spectrum (photon index 1.0+/-0.2) and a luminosity (1.3+/-0.2) 10^{29} ergs/s in the 0.5 - 8 keV band, for an assumed distance of 200 pc. The tail could be either a pulsar jet, confined by a toroidal magnetic field of about 100 microGauss, or it can be associated with the shocked relativistic wind behind the supersonically moving pulsar confined by the ram pressure of the oncoming interstellar medium. We also detected an arc-like structure 5 - 7 ahead of the pulsar, extended perpendicular to the tail, with a factor of 3 lower luminosity. We see a 3-sigma enhancement in the Chandra image apparently connecting the arc with the southern outer tail that has been possibly detected with XMM-Newton. The observed structures imply that the Gemingas pulsar wind is intrinsically anisotropic.