No Arabic abstract
We examine the effects of photon bubble instability in radiation-dominated accretion disks such as those found around black holes in active galactic nuclei and X-ray binary star systems. Two- and 3-D numerical radiation MHD calculations of small patches of disk are used. Modes with wavelengths shorter than the gas pressure scale height grow faster than the orbital frequency in the surface layers. The fastest growth rate observed is five times the orbital frequency and occurs on nearly-vertical magnetic fields. The spectrum of linear modes agrees with a WKB analysis indicating still faster growth at unresolved scales, with a maximum proportional to the gravity and inversely proportional to the gas sound speed. Disturbances reaching non-linear amplitudes steepen into trains of shocks similar to a 1-D periodic non-linear analytic solution. Variations in propagation speed result in merging of adjacent fronts, and over time the shock spacing and amplitude increase. Growth is limited by the strength of the field, and the structure is disrupted when the ram pressure exceeds the magnetic pressure. The largest horizontal density variations are similar to the ratio of magnetic to gas pressure, and in our calculations are more than 100. Under the conditions considered, radiation diffuses through the inhomogeneneous flow 5x faster than through the initial hydrostatic equilibrium, and the net cooling rate is several times greater than in a similar calculation without magnetic fields showing the effects of convection. These results indicate photon bubbles may be important in cooling radiation-dominated disks.
The standard equilibrium for radiation-dominated accretion disks has long been known to be viscously, thermally, and convectively unstable, but the nonlinear development of these instabilities---hence the actual state of such disks---has not yet been identified. By performing local two-dimensional hydrodynamic simulations of disks, we demonstrate that convective motions can release heat sufficiently rapidly as to substantially alter the vertical structure of the disk. If the dissipation rate within a vertical column is proportional to its mass, the disk settles into a new configuration thinner by a factor of two than the standard radiation-supported equilibrium. If, on the other hand, the vertically-integrated dissipation rate is proportional to the vertically-integrated total pressure, the disk is subject to the well-known thermal instability. Convection, however, biases the development of this instability toward collapse. The end result of such a collapse is a gas pressure-dominated equilibrium at the original column density.
When an accretion disk falls prey to the runaway instability, a large portion of its mass is devoured by the black hole within a few dynamical times. Despite decades of effort, it is still unclear under what conditions such an instability can occur. The technically most advanced relativistic simulations to date were unable to find a clear sign for the onset of the instability. In this work, we present three-dimensional relativistic hydrodynamics simulations of accretion disks around black holes in dynamical space-time. We focus on the configurations that are expected to be particularly prone to the development of this instability. We demonstrate, for the first time, that the fully self-consistent general relativistic evolution does indeed produce a runaway instability.
Axisymmetric magnetorotational instability (MRI) in viscous accretion disks is investigated by linear analysis and two-dimensional nonlinear simulations. The linear growth of the viscous MRI is characterized by the Reynolds number defined as $R_{rm MRI} equiv v_A^2/ uOmega $, where $v_A$ is the Alfv{e}n velocity, $ u$ is the kinematic viscosity, and $Omega$ is the angular velocity of the disk. Although the linear growth rate is suppressed considerably as the Reynolds number decreases, the nonlinear behavior is found to be almost independent of $R_{rm MRI}$. At the nonlinear evolutionary stage, a two-channel flow continues growing and the Maxwell stress increases until the end of calculations even though the Reynolds number is much smaller than unity. A large portion of the injected energy to the system is converted to the magnetic energy. The gain rate of the thermal energy, on the other hand, is found to be much larger than the viscous heating rate. Nonlinear behavior of the MRI in the viscous regime and its difference from that in the highly resistive regime can be explained schematically by using the characteristics of the linear dispersion relation. Applying our results to the case with both the viscosity and resistivity, it is anticipated that the critical value of the Lundquist number $S_{rm MRI} equiv v_A^2/etaOmega$ for active turbulence depends on the magnetic Prandtl number $S_{{rm MRI},c} propto Pm^{1/2}$ in the regime of $Pm gg 1$ and remains constant when $Pm ll 1$, where $Pm equiv S_{rm MRI}/R_{rm MRI} = u/eta$ and $eta$ is the magnetic diffusivity.
MHD turbulence is generally believed to have two important functions in accretion disks: it transports angular momentum outward, and the energy in its shortest wavelength modes is dissipated into the heat that the disks radiate. In this paper we examine a pair of mechanisms which may play an important role in regulating the amplitude and spectrum of this turbulence: photon diffusion and viscosity. We demonstrate that in radiation pressure-dominated disks, photon damping of compressive MHD waves is so rapid that it likely dominates all other dissipation mechanisms.
Signatures of stochastic effects in the radiation of a relativistic electron beam interacting with a counterpropagating superstrong short focused laser pulse are investigated in a quantum regime when the electrons radiation dominates its dynamics. We consider the electron-laser interaction at near-reflection conditions when pronounced high-energy gamma-ray bursts arise in the backward-emission direction with respect to the initial motion of the electrons. The quantum stochastic nature of the gamma-photon emission is exhibited in the angular distributions of the radiation and explained in an intuitive picture. Although, the visibility of the stochasticity signatures depends on the laser and electron beam parameters, the signatures are of a qualitative nature and robust. The stochasticity, a fundamental quantum property of photon emission, should thus be measurable rather straightforwardly with laser technology available in near future.