Do you want to publish a course? Click here

The runaway instability in general relativistic accretion disks

203   0   0.0 ( 0 )
 Added by Oleg Korobkin
 Publication date 2012
  fields Physics
and research's language is English
 Authors O. Korobkin




Ask ChatGPT about the research

When an accretion disk falls prey to the runaway instability, a large portion of its mass is devoured by the black hole within a few dynamical times. Despite decades of effort, it is still unclear under what conditions such an instability can occur. The technically most advanced relativistic simulations to date were unable to find a clear sign for the onset of the instability. In this work, we present three-dimensional relativistic hydrodynamics simulations of accretion disks around black holes in dynamical space-time. We focus on the configurations that are expected to be particularly prone to the development of this instability. We demonstrate, for the first time, that the fully self-consistent general relativistic evolution does indeed produce a runaway instability.



rate research

Read More

(Abridged.) The accretion-induced collapse (AIC) of a white dwarf (WD) may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting white dwarfs in Type Ia supernovae. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a Type III signal in the literature. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. In rapidly differentially rotating models, the disk mass can be as large as ~0.8-Msun. Slowly and/or uniformly rotating models produce much smaller disks. Finally, we find that the postbounce cores of rapidly spinning white dwarfs can reach sufficiently rapid rotation to develop a nonaxisymmetric rotational instability.
77 - G.F. Aldi , V. Bozza 2016
The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analytical calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height $H$ to cylindrical radius $R$ ratio of $|H/R|sim 0.2--1$) accretion flows around BHs with various dimensionless spins ($a/M$, with BH mass $M$) and with initially toroidally-dominated ($phi$-directed) and poloidally-dominated ($R-z$ directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough $|a/M|$, coherent large-scale (i.e. $gg H$) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. For sufficiently high $|a/M|$ or low $|H/R|$ the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric magnetically choked accretion flow (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with $gtrsim 100$% efficiency for $|a/M|gtrsim 0.9$. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk quasi-periodic oscillation (JD-QPO) mechanism. The high-frequency QPO has spherical harmonic $|m|=1$ mode period of $tausim 70GM/c^3$ for $a/Msim 0.9$ with coherence quality factors $Qgtrsim 10$. [abridged]
We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic hydrodynamics coupled to an optically thick radiation field in two existing GR-hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several 1D tests we verify the codes new ability to deal with this stiffness and show consistency. Then, still in 1D, we compute a luminosity versus accretion rate diagram for the setup of spherical accretion onto a Schwarzschild black hole and find good agreement with previous work. Lastly, we revisit the supersonic Bondi Hoyle Lyttleton (BHL) accretion in 2D where we can now present simulations of realistic temperatures, down to T~10^6 K. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching gamma_effective ~ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as eta ~ 10^{-2}; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of astrophysical systems.
The exact time-dependent solution is obtained for a magnetic field growth during a spherically symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is increasing with time, changing from the initially uniform into a quasi-radial field. Equipartition between magnetic and kinetic energies in the falling gas is established in the developed stages of the flow. Estimates of the synchrotron radiation intensity are presented for the stationary flow. The main part of the radiation is formed in the region $r leq 7 r_g$, here $r_g$ is a BH gravitational radius. The two-dimensional stationary self-similar magnetohydrodynamic solution is obtained for the matter accretion into BH, in a presence of a large-scale magnetic field, when the magnetic field far from the BH is homogeneous and does not influence the flow. At the symmetry plane perpendicular to the direction of the distant magnetic field, the quasi-stationary disk is formed around BH, which structure is determined by dissipation processes. Parameters of the shock forming due to matter infall onto the disk are obtained. The radiation spectrum of the disk and the shock are obtained for the $10,, M_odot$ BH. The luminosity of such object is about the solar one, for a characteristic galactic gas density, with possibility of observation at distances less than 1 kpc. The spectra of a laminar and a turbulent disk structure around BH are very different. The turbulent disk emits a large part of its flux in the infrared. It may occur that some of the galactic infrared star-like sources are a single BH in the turbulent accretion state. The radiative efficiency of the magnetized disk is very high, reaching $sim 0.5,dot M,c^2$ so it was called recently as a magnetically arrested disk (MAD). Numerical simulations of MAD, and its appearance during accretion into neutron stars are considered and discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا