Do you want to publish a course? Click here

Multi-frequency imaging in VLBI

72   0   0.0 ( 0 )
 Added by Francisco Colomer
 Publication date 2004
  fields Physics
and research's language is English
 Authors S. Likhachev




Ask ChatGPT about the research

The new technique, multi-frequency imaging (MFI) is developed. In VLBI, Multi-Frequency Imaging (MFI) consists of multi-frequency synthesis (MFS) and multi-frequency analysis (MFA) of the VLBI data obtained from observations on various frequencies. A set of linear deconvolution MFI algorithms is described. The algorithms make it possible to obtain high quality images interpolated on any given frequency inside any given bandwidth, and to derive reliable estimates of spectral indexes for radio sources with continuum spectrum. Thus MFI approach makes it is possible not only to improve the quality and fidelity of the images and also essentially to derive the morphology of the observed radio sources.



rate research

Read More

90 - S. Kameno 2004
We report results of pentachromatic VLBI survey for 18 GHz-peaked spectrum sources. Spectral fitting at every pixel across five frequencies allows us to illustrate distribution of optical depth in terms of free-free absorption or synchrotron self absorption. Quasars and Seyfert 1 sources show one-sided morphology with a core at the end where the optical depth peaks. Radio galaxies and Seyfert 2 show symmetric double-sided jets with a optically thick core at the center.
135 - A. More , R. W. Porcas 2007
We present Global VLBI and HSA images of the gravitational lens B2016+112 at 18, 6 and 3.6 cm. Previous VLBI observations showed that images A and B (which are clearly lensed images of a single background source) and the elongated region C are each divided into components. Our new high-resolution maps reveal more components in images A and B, clearly demonstrating their expected opposite parities. According to the scenario of Koopmans et al. (2002), the arc-like region C consists of two merging, partial images (``C1-C2) of just a small region of the same background source, seen with high lens magnification. We have determined the spectra and relative positions of the components within all four images in order to test this scenario. We find that the outer north-west components in images A and B do indeed have radio spectra similar to the components seen in C1 and C2.
Atmospheric propagation effects at millimeter wavelengths can significantly alter the phases of radio signals and reduce the coherence time, putting tight constraints on high frequency Very Long Baseline Interferometry (VLBI) observations. In previous works, it has been shown that non-dispersive (e.g. tropospheric) effects can be calibrated with the frequency phase transfer (FPT) technique. The coherence time can thus be significantly extended. Ionospheric effects, which can still be significant, remain however uncalibrated after FPT as well as the instrumental effects. In this work, we implement a further phase transfer between two FPT residuals (i.e. so-called FPT-square) to calibrate the ionospheric effects based on their frequency dependence. We show that after FPT-square, the coherence time at 3 mm can be further extended beyond 8~hours, and the residual phase errors can be sufficiently canceled by applying the calibration of another source, which can have a large angular separation from the target (>20 deg) and significant temporal gaps. Calibrations for all-sky distributed sources with a few calibrators are also possible after FPT-square. One of the strengths and uniqueness of this calibration strategy is the suitability for high-frequency all-sky survey observations including very weak sources. We discuss the introduction of a pulse calibration system in the future to calibrate the remaining instrumental effects and allowing the possibility of imaging the source structure at high frequencies with FPT-square, where all phases are fully calibrated without involving any additional sources.
We present the observational results of the Gamma-ray blazar, 3C 66A, at 2.3, 8.4, and 22 GHz at 4 epochs during 2004-05 with the VLBA. The resulting images show an overall core-jet structure extending roughly to the south with two intermediate breaks occurring in the region near the core. By model-fitting to the visibility data, the northmost component, which is also the brightest, is identified as the core according to its relatively flat spectrum and its compactness. As combined with some previous results to investigate the proper motions of the jet components, it is found the kinematics of 3C 66A is quite complicated with components of inward and outward, subluminal and superluminal motions all detected in the radio structure. The superluminal motions indicate strong Doppler boosting exists in the jet. The apparent inward motions of the innermost components last for at least 10 years and could not be caused by new-born components. The possible reason could be non-stationarity of the core due to opacity change.
337 - K. V. Sokolovsky 2010
Single-zone synchrotron self-Compton and external Compton models are widely used to explain broad-band Spectral Energy Distributions (SEDs) of blazars from infrared to gamma-rays. These models bear obvious similarities to the homogeneous synchrotron cloud model which is often applied to explain radio emission from individual components of parsec-scale radio jets. The parsec-scale core, typically the brightest and most compact feature of blazar radio jet, could be the source of high-energy emission. We report on ongoing work to test this hypothesis by deriving the physical properties of parsec-scale radio emitting regions of twenty bright Fermi blazars using dedicated 5-43 GHz VLBA observations and comparing these parameters to results of SED modeling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا