Do you want to publish a course? Click here

Methanol masers in environments of three massive protostars

51   0   0.0 ( 0 )
 Added by Francisco Colomer
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first EVN maps of 6.7 GHz methanol masers of three high-mass protostar candidates selected from the Torun unbiased survey of the Galactic plane. A variety of linear and arc like structures was detected. A number of maser clusters with projected sizes of 20-100 AU show monotonic velocity gradients. Some of them are roughly perpendicular to the major axes of these structures and can arise behind shock fronts.



rate research

Read More

124 - J. S. Urquhart 2013
Using the 870-$mu$m APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), we have identified 577 submillimetre continuum sources with masers from the methanol multibeam (MMB) survey in the region $280degr < ell < 20degr$; $|,b,| < 1.5degr$. 94,per,cent of methanol masers in the region are associated with sub-millimetre dust emission. We estimate masses for ~450 maser-associated sources and find that methanol masers are preferentially associated with massive clumps. These clumps are centrally condensed, with envelope structures that appear to be scale-free, the mean maser position being offset from the peak column density by 0.0 pm 4. Assuming a Kroupa initial mass function and a star-formation efficiency of ~30,per,cent, we find that over two thirds of the clumps are likely to form clusters with masses >20,msun. Furthermore, almost all clumps satisfy the empirical mass-size criterion for massive star formation. Bolometric luminosities taken from the literature for ~100 clumps range between ~100 and 10$^6$,lsun. This confirms the link between methanol masers and massive young stars for 90,per,cent of our sample. The Galactic distribution of sources suggests that the star-formation efficiency is significantly reduced in the Galactic-centre region, compared to the rest of the survey area, where it is broadly constant, and shows a significant drop in the massive star-formation rate density in the outer Galaxy. We find no enhancement in source counts towards the southern Scutum-Centaurus arm tangent at $ell ~ 315degr$, which suggests that this arm is not actively forming stars.
(Abridged) Astronomical masers have been effective tools to study magnetic fields for many years. In particular, methanol can be used to probe different parts of protostars such as accretion discs and outflows, since it produces one of the strongest and the most commonly observed masers in massive star-forming regions. We investigate the polarization properties of selected methanol maser transitions in light of newly calculated methanol Lande g-factors and considering hyperfine components. We compare our results with previous observations and we evaluate the effect of preferred hyperfine pumping and non-Zeeman effects. We run simulations using the radiative transfer code CHAMP. We find a dependence of linear and circular polarization fractions on the hyperfine transitions. Preferred hyperfine pumping can explain some high levels of linear and circular polarization and some of the peculiar features seen in the S-shape of observed V-profiles. Methanol masers are not significantly affected by non-Zeeman effects. Our models show that for methanol maser emission, both the linear and circular polarization percentages depend on which hyperfine transition is masing and the degree to which it is being pumped. Since non-Zeeman effects become more relevant at high values of brightness temperatures, it is important to obtain good estimates of these quantities and on maser beaming angles. Better constraints on the brightness temperature will help in understand about the extent to which non-Zeeman effects contribute to the observed polarization percentages. In order to detect separate hyperfine components, an intrinsic thermal line width significantly smaller than the hyperfine separation is required.
Methanol masers at 6.7 GHz are associated with high-mass star-forming regions (HMSFRs) and often have mid-infrared (MIR) counterparts characterized by extended emission at 4.5 $mu$m, which likely traces outflows from massive young stellar objects (MYSOs). Our objectives are to determine the milliarcsecond (mas) morphology of the maser emission and to examine if it comes from one or several candidate MIR counterparts in the clusters of MYSOs. The European VLBI Network (EVN) was used to image the 6.7 GHz maser line with ~2.1 field of view toward 14 maser sites from the Torun catalog. Quasi-simultaneous observations were carried out with the Torun 32 m telescope. We obtained maps with mas angular resolution that showed diversity of methanol emission morphology: a linear distribution (e.g., G37.753-00.189), a ring-like (G40.425+00.700), and a complex one (e.g., G45.467+00.053). The maser emission is usually associated with the strongest MIR counterpart in the clusters; no maser emission was detected from other MIR sources in the fields of view of 2.1 in diameter. The maser source luminosity seems to correlate with the total luminosity of the central MYSO. Although the Very Long Baseline Interferometry (VLBI) technique resolves a significant part of the maser emission, the morphology is still well determined. This indicates that the majority of maser components have compact cores.
102 - L.J. Greenhill 2007
Galactic nuclei are well known sources of OH and H2O maser emission. It appears that intense star formation in ultra-luminous infrared galaxies drives most OH sources. In contrast, nuclear activity appears to drive most H2O sources. When H2O emission originates in accretion disk structures, constrained geometry and dynamics enable robust interpretation of spectroscopic and imaging data. The principal science includes study of AGN geometry at parsec and sub-parsec radii and measurement of geometric distances in the Hubble Flow. New high accuracy estimates of the Hubble constant, Ho, obtained from maser distances may enable new substantively improved constraints on fundamental cosmological parameters (e.g., dark energy).
We have carried out observations of CCH ($N=1-0$), CH$_{3}$CN ($J=5-4$), and three $^{13}$C isotopologues of HC$_{3}$N ($J=10-9$) toward three massive young stellar objects (MYSOs), G12.89+0.49, G16.86--2.16, and G28.28--0.36, with the Nobeyama 45-m radio telescope. Combined with previous results on HC$_{5}$N, the column density ratios of $N$(CCH)/$N$(HC$_{5}$N), hereafter the CCH/HC$_{5}$N ratios, in the MYSOs are derived to be $sim 15$. This value is lower than that in a low-mass warm carbon chain chemistry (WCCC) source by more than one order of magnitude. We compare the observed CCH/HC$_{5}$N ratios with hot-core model calculations (Taniguchi et al. 2019). The observed ratios in the MYSOs can be best reproduced by models when the gas temperature is $sim 85$ K, which is higher than in L1527, a low-mass WCCC source ($sim 35$ K). These results suggest that carbon-chain molecules detected around the MYSOs exist at least partially in higher temperature regions than those in low-mass WCCC sources. There is no significant difference in column density among the three $^{13}$C isotopologues of HC$_{3}$N in G12.89+0.49 and G16.86-2.16, while HCC$^{13}$CN is more abundant than the others in G28.28--0.36. We discuss carbon-chain chemistry around the three MYSOs based on the CCH/HC$_{5}$N ratio and the $^{13}$C isotopic fractionation of HC$_{3}$N.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا