No Arabic abstract
We report follow-up XMM-Newton and optical observations of three new polars found in the Sloan Digital Sky Survey. Simple modeling of the X-ray spectra, and consideration of the details of the X-ray and optical lightcurves corroborate the polar nature of these three systems and provide further insights into their accretion characteristics. During the XMM-Newton observation of SDSS J072910.68+365838.3, X-rays are undetected apart from a probable flare event, during which we find both the typical hard X-ray bremsstrahlung component and a very strong line O VII (E=0.57 keV), but no evidence of a soft blackbody contribution. In SDSS J075240.45+362823.2 we identify an X-ray eclipse at the beginning of the observation, roughly in phase with the primary minimum of the optical broad band curve. The X-ray spectra require the presence of both hard and soft X-ray components, with their luminosity ratio consistent with that found in other recent XMM-Newton results on polars. Lastly, SDSS J170053.30+400357.6 appears optically as a very typical polar, however its large amplitude optical modulation is 180 degrees out of phase with the variation in our short X-ray lightcurve.
The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 sq. deg. region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.
In the latest in our series of papers on XMM-Newton and ground-based optical follow-up of new candidate magnetic cataclysmic variables (mCVs) found in the Sloan Digital Sky Survey, we report classifications of three systems: SDSS J144659.95+025330.3, SDSS J205017.84-053626.8, and SDSS J210131.26+105251.5. Both the X-ray and optical fluxes of SDSS J1446+02 are modulated on a period of 48.7+/-0.5 min, with the X-ray modulation showing the characteristic energy dependence of photo-electric absorption seen in many intermediate polars (IP). A longer period modulation and radial velocity variation is also seen at a period around 4 hrs, though neither dataset set is long enough to constrain this longer, likely orbital, period well. SDSS J2050-05 appears to be an example of the most highly magnetized class of mCV, a disk-less, stream-fed polar. Its 1.57 hr orbital period is well-constrained via optical eclipse timings; in the X-ray it shows both eclipses and an underlying strong, smooth modulation. In this case, broadly phase-resolved spectral fits indicate that this change in flux is the result of a varying normalization of the dominant component (a 41 keV MEKAL), plus the addition of a partial covering absorber during the lower flux interval. SDSS J2101+10 is a more perplexing system to categorize: its X-ray and optical fluxes exhibit no large periodic modulations; there are only barely detectable changes in the velocity structure of its optical emission lines; the X-ray spectra require only absorption by the interstellar medium; and the temperatures of the MEKAL fits are low, with maximum temperature components of either 10 or 25 keV. We conclude that SDSS J2101+10 can not be an IP, nor likely a polar, but is rather most likely a disc accretor-- a low inclination SW Sex star.
The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX; Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan Digital Sky Surveys 0.5m photometric telescope (PT) and 2.5m survey telescope were used to observe the afterglow of GRB010222 starting 4.8 hours after the GRB. The 0.5m PT observed the afterglow in five, 300 sec g band exposures over the course of half an hour, measuring a temporal decay rate in this short period of F_nu propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart nearly simultaneously in five filters (u g r i z), with r = 18.74+/-0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglows temporal decay, are well fit by the power-law F_nu propto nu^{-0.90+/-0.03} with the exception of the u band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star forming region.
We report follow-up XMM-Newton and ground-based optical observations of the unusual X-ray binary SDSS J102347.67+003841.2 (=FIRST J102347.6+003841), and a new candidate intermediate polar found in the Sloan Digital Sky Survey: SDSS J093249.57+472523.0. SDSS J1023 was observed in its low-state, with similar magnitude/color (V=17.4 and B=17.9), and smooth orbital modulation as seen in most previous observations. We further refine the ephemeris (for photometric minimum) to: HJD(TT)_min= 2453081.8546(3) + E* 0.198094(1) d. It is easily detected in X-rays at an unabsorbed flux (0.01-10.0 keV) of 5x10e-13 erg/cm^2/s. Fitting a variety of models we find that: (i) either a hot (kT>~15 keV) optically thin plasma emission model (bremsstrahlung or MEKAL) or a simple power law can provide adequate fits to the data; (ii) these models prefer a low column density ~10e19 cm^-2; (iii) a neutron star atmosphere plus power law model (as found for quiescent low-mass X-ray binaries) can also produce a good fit (for plausible distances), though only for a much higher column of about 4x10e20 cm^-2 and a very cool atmosphere kT<~50eV. These results support the case that SDSS J1023 is a transient LMXB, and indeed places it in the subclass of such systems whose quiescent X-ray emission is dominated by a hard power law component. Our optical photometry of SDSS J0932 reveals that it is an high inclination eclipsing system. Combined with its optical characteristics -- high excitation emission lines, and brightness, yielding a large F_X/F_opt ratio -- its highly absorbed X-ray spectrum argues that SDSS J0932 is a strong IP candidate. However, only more extensive optical photometry and a detection of its spin or spin-orbit beat frequency can confirm this classification. (abridged)
We present new Chandra observations of 21 z>4 quasars, including 11 sources at z>5. These observations double the number of X-ray detected quasars at z>5, allowing investigation of the X-ray spectral properties of a substantial sample of quasars at the dawn of the modern Universe. By jointly fitting the spectra of 15 z>5 radio-quiet quasars (RQQs), including sources from the Chandra archive, with a total of 185 photons, we find a mean X-ray power-law photon index of Gamma=1.95^{+0.30}_{-0.26}, and a mean neutral intrinsic absorption column density of N_H<~6x10^{22} cm^{-2}. These results show that quasar X-ray spectral properties have not evolved up to the highest observable redshifts. We also find that the mean optical-X-ray spectral slope (alpha_ox) of optically-selected z>5 RQQs, excluding broad absorption line quasars, is alpha_ox=-1.69+/-0.03, which is consistent with the value predicted from the observed relationship between alpha_ox and ultraviolet luminosity. Four of the sources in our sample are members of the rare class of weak emission-line quasars, and we detect two of them in X-rays. We discuss the implications our X-ray observations have for the nature of these mysterious sources and, in particular, whether their weak-line spectra are a consequence of continuum boosting or a deficit of high-ionization line emitting gas.