Do you want to publish a course? Click here

Sloan Digital Sky Survey Multicolor Observations of GRB010222

155   0   0.0 ( 0 )
 Added by Brian C. Lee
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX; Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan Digital Sky Surveys 0.5m photometric telescope (PT) and 2.5m survey telescope were used to observe the afterglow of GRB010222 starting 4.8 hours after the GRB. The 0.5m PT observed the afterglow in five, 300 sec g band exposures over the course of half an hour, measuring a temporal decay rate in this short period of F_nu propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart nearly simultaneously in five filters (u g r i z), with r = 18.74+/-0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglows temporal decay, are well fit by the power-law F_nu propto nu^{-0.90+/-0.03} with the exception of the u band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star forming region.



rate research

Read More

98 - A. V. Sergeyev , B. Carry 2021
Context. The populations of small bodies of the Solar System (asteroids, comets, Kuiper-Belt objects) are used to constrain the origin and evolution of the Solar System. Both their orbital distribution and composition distribution are required to track the dynamical pathway from their regions of formation to their current locations. Aims. We aim at increasing the sample of Solar System objects that have multi-filter photometry and compositional taxonomy. Methods. We search for moving objects in the archive of the Sloan Digital Sky Survey. We attempt at maximizing the number of detections by using loose constraints on the extraction. We then apply a suite of filters to remove false-positive detections (stars or galaxies) and mark out spurious photometry and astrometry. Results. We release a catalog of 1 542 522 entries, consisting of 1 036 322 observations of 379 714 known and unique SSOs together with 506 200 observations of moving sources not linked with any known SSOs. The catalog completeness is estimated to be about 95% and the purity to be above 95% for known SSOs.
70 - Jeffrey R. Pier 2002
The astrometric calibration of the Sloan Digital Sky Survey is described. For point sources brighter than r ~ 20 the astrometric accuracy is 45 milliarcseconds (mas) rms per coordinate when reduced against the USNO CCD Astrograph Catalog, and 75 mas rms when reduced against Tycho-2, with an additional 20 - 30 mas systematic error in both cases. The rms errors are dominated by anomalous refraction and random errors in the primary reference catalogs. The relative astrometric accuracy between the r filter and each of the other filters (u g i z) is 25 - 35 mas rms. At the survey limit (r ~ 22), the astrometric accuracy is limited by photon statistics to approximately 100 mas rms for typical seeing. Anomalous refraction is shown to contain components correlated over two or more degrees on the sky.
We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS Stripe 82, and contains 58 million photometric observations in the SDSS ugriz system for 1.4 million unresolved sources. In each photometric bandpass we compute various low-order lightcurve statistics and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g=20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The majority (2/3) of these variable sources are low-redshift (<2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as is the UV excess color selection (at high Galactic latitudes). We analyze the distribution of lightcurve skewness for quasars and find that is centered on zero. We find that about 1/4 of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of lightcurve skewness in the g-r vs. u-g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over six hundred RR Lyrae stars, we demonstrate rich halo substructure out to distances of 100 kpc. We extrapolate these results to expected performance by the Large Synoptic Survey Telescope and estimate that it will obtain well-sampled 2% accurate, multi-color lightcurves for ~2 million low-redshift quasars, and will discover at least 50 million variable stars.
112 - Ohad Shemmer 2006
We present new Chandra observations of 21 z>4 quasars, including 11 sources at z>5. These observations double the number of X-ray detected quasars at z>5, allowing investigation of the X-ray spectral properties of a substantial sample of quasars at the dawn of the modern Universe. By jointly fitting the spectra of 15 z>5 radio-quiet quasars (RQQs), including sources from the Chandra archive, with a total of 185 photons, we find a mean X-ray power-law photon index of Gamma=1.95^{+0.30}_{-0.26}, and a mean neutral intrinsic absorption column density of N_H<~6x10^{22} cm^{-2}. These results show that quasar X-ray spectral properties have not evolved up to the highest observable redshifts. We also find that the mean optical-X-ray spectral slope (alpha_ox) of optically-selected z>5 RQQs, excluding broad absorption line quasars, is alpha_ox=-1.69+/-0.03, which is consistent with the value predicted from the observed relationship between alpha_ox and ultraviolet luminosity. Four of the sources in our sample are members of the rare class of weak emission-line quasars, and we detect two of them in X-rays. We discuss the implications our X-ray observations have for the nature of these mysterious sources and, in particular, whether their weak-line spectra are a consequence of continuum boosting or a deficit of high-ionization line emitting gas.
The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 sq. deg. region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا