Do you want to publish a course? Click here

The Deep2 Galaxy Redshift Survey: Evolution of Close Galaxy Pairs and Major-Merger Rates Up to z ~ 1.2

59   0   0.0 ( 0 )
 Added by Lihwai Lin
 Publication date 2004
  fields Physics
and research's language is English
 Authors Lihwai Lin




Ask ChatGPT about the research

We derive the close, kinematic pair fraction and merger rate up to z ~ 1.2 from the initial data of the DEEP2 Redshift Survey. Assuming a mild luminosity evolution, the number of companions per luminous galaxy is found to evolve as (1+z)^{m}, with m = 0.51+-0.28; assuming no evolution, m = 1.60+-0.29. Our results imply that only 9% of present-day $L^{*}$ galaxies have undergone major mergers since z ~ 1.2 and that the average major merger rate is about 4* 10^{-4} h^{3} Mpc^{-3} Gyr^{-1} for z ~ 0.5 - 1.2. Most previous studies have yielded higher values.



rate research

Read More

132 - Lihwai Lin 2008
We study the redshift evolution of galaxy pair fractions and merger rates for different types of galaxies using kinematic pairs selected from the DEEP2 Redshift Survey. By parameterizing the evolution of the pair fraction as (1+z)^{m}, we find that the companion rate increases mildly with redshift with m = 0.41+-0.20 for all galaxies with -21 < M_B^{e} < -19. Blue galaxies show slightly faster evolution in the blue companion rate with m = 1.27+-0.35 while red galaxies have had fewer red companions in the past as evidenced by the negative slope m = -0.92+-0.59. We find that at low redshift the pair fraction within the red sequence exceeds that of the blue cloud, indicating a higher merger probability among red galaxies compared to that among the blue galaxies. With further assumptions on the merger timescale and the fraction of pairs that will merge, the galaxy major merger rates for 0.1 < z <1.2 are estimated to be ~10^{-3}h^{3}Mpc^{-3}Gyr^{-1} with a factor of 2 uncertainty. At z ~ 1.1, 68% of mergers are wet, 8% of mergers are dry, and 24% of mergers are mixed, compared to 31% wet mergers, 25% dry mergers, and 44% mixed mergers at z ~ 0.1. The growth of dry merger rates with decreasing redshift is mainly due to the increase in the co-moving number density of red galaxies over time. About 22% to 54% of present-day L^{*} galaxies have experienced major mergers since z ~ 1.2, depending on the definition of major mergers. Moreover, 24% of the red galaxies at the present epoch have had dry mergers with luminosity ratios between 1:4 and 4:1 since z ~ 1. Our results also suggest that the wet mergers and/or mixed mergers may be partially responsible for producing red galaxies with intermediate masses while a significant portion of massive red galaxies is assembled through dry mergers at later times.
The infrared (IR) emission of M_* galaxies (10^{10.4} < M_{star} < 10^{11.0} M_sun) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single disk galaxies in well matched control samples to study the cosmic evolution of the star-formation enhancement induced by galaxy-galaxy interaction. Both the mean IR SED and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star-formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star-formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star-formation enhancement in S+S pairs to decrease with increasing redshift. Between z=0 and z=1, this decline of interaction-induced star-formation enhancement occurs in parallel with the dramatic increase (by a factor of ~10) of the sSFR of single SFGs, both can be explained by the higher gas fraction in higher z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star-formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the inter-galactic medium IGM in the dark matter halos (DMH) hosting these pairs.
The evolution of the B-band galaxy luminosity function is measured using a sample of more than 11,000 galaxies with spectroscopic redshifts from the DEEP2 Redshift Survey. The rest-frame M_B versus U-B color-magnitude diagram of DEEP2 galaxies shows that the color-magnitude bi-modality seen in galaxies locally is still present at redshifts z > 1. Dividing the sample at the trough of this color bimodality into predominantly red and blue galaxies, we find that the luminosity function of each galaxy color type evolves differently. Blue counts tend to shift to brighter magnitudes at constant number density, while the red counts remain largely constant at a fixed absolute magnitude. Using Schechter functions with fixed faint-end slopes we find that M*_B for blue galaxies brightens by ~ 1.3 magnitudes per unit redshift, with no significant evolution in number density. For red galaxies M*_B brightens somewhat less with redshift, while the formal value of phi* declines. When the population of blue galaxies is subdivided into two halves using the rest-frame color as the criterion, the measured evolution of both blue subpopulations is very similar.
141 - Jennifer M. Lotz 2011
Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged `observability timescale T_obs(z) for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, T_obs(z) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate T_obs(z) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G-M20, and (3) the morphology indicator asymmetry A. Then we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically-motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the range of mass-ratio measured by different techniques and differing parent galaxy selection. The major merger rate per unit co-moving volume for samples selected with constant number density evolves much more strongly with redshift (~ (1+z)^(+3.0 pm 1.1)) than samples selected with constant stellar mass or passively evolving luminosity (~ (1+z)^(+0.1 pm 0.4)). We calculate the minor merger rate (1:4 < M_{sat}/M_{primary} <~ 1:10) by subtracting the major merger rate from close pairs from the `total merger rate determined by G-M20. The implied minor merger rate is ~3 times the major merger rate at z ~ 0.7, and shows little evolution with redshift.
107 - Lihwai Lin 2010
We study the environment of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of mixed and dry merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (Nc) is observed to increase with overdensity, using N-body simulations we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the fractional merger rate for wet mergers over the redshift range we have probed. On the other hand, the fractional dry merger rate increases rapidly with local density due to the increased population of red galaxies in dense environments. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. We conclude that, as early as z ~ 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2+-0.3 dry mergers since this time, accounting for (38+-10)% of their mass accretion in the last 8 billion years. Our findings suggest that dry mergers are crucial in the mass-assembly of massive red galaxies in dense environments, such as Brightest Cluster Galaxies (BCGs) in galaxy groups and clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا