Do you want to publish a course? Click here

Galaxy-galaxy Lensing: Dissipationless Simulations Versus the Halo Model

56   0   0.0 ( 0 )
 Added by Rachel Mandelbaum
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy-galaxy lensing is a powerful probe of the relation between galaxies and dark matter halos, but its theoretical interpretation requires a careful modeling of various contributions, such as the contribution from central and satellite galaxies. For this purpose, a phenomenological approach based on the halo model has been developed, allowing for fast exploration of the parameter space of models. In this paper, we investigate the ability of the halo model to extract information from the g-g weak lensing signal by comparing it to high-resolution dissipationless simulations that resolve subhalos. We find that the halo model reliably determines parameters such as the host halo mass of central galaxies, the fraction of galaxies that are satellites, and their radial distribution inside larger halos. If there is a significant scatter present in the central galaxy host halo mass distribution, then the mean and median mass of that distribution can differ significantly from one another, and the halo model mass determination lies between the two. This result suggests that when analyzing the data, galaxy subsamples with a narrow central galaxy halo mass distribution, such as those based on stellar mass, should be chosen for a simpler interpretation of the results.



rate research

Read More

We use high-resolution dissipationless simulations of the concordance flat LCDM model to make predictions for the galaxy--mass (GM) correlations and compare them to the recent SDSS weak lensing measurements.We use a simple observationally motivated scheme to assign luminosities and colors to the halos.This allows us to closely match the selection criteria used to define observational samples.The simulations reproduce the observed GM correlation function and its observed dependencies on luminosity and color.The luminosity dependence of the correlation function is primarily determined by the changing relative contribution of central and satellite galaxies at different luminosities. The color dependence of the GM correlations reflects the difference in the typical environments of blue and red galaxies. We also find agreement between the predicted and observed cross-bias, b_x=b/r,at all probed scales.The GM correlation coefficient, r, is close to unity on scales >1/h Mpc.The cross bias is thus expected to measure the actual bias of galaxy clustering on these scales.The aperture mass-to-light ratio is independent of galaxy color.The aperture mass scales approximately linearly with luminosity at L_r>10^{10}h^{-2} Lsun, while at lower luminosities the scaling is shallower: L_r^{0.5}. We show that most of the luminous galaxies (M_r<-21) are near the centers of their halos and their GM correlation function at r<100/h kpc can therefore be interpreted as the average dark matter density profile of these galaxies. We find that for galaxies in a given narrow luminosity range, there is a broad and possibly non-gaussian distribution of halo virial masses. Therefore, the average relation between mass and luminosity derived from the weak lensing analyses should be interpreted with caution.
We examine two extreme models for the build-up of the stellar component of luminous elliptical galaxies. In one case, we assume the build-up of stars is dissipational, with centrally accreted gas radiating away its orbital and thermal energy; the dark matter halo will undergo adiabatic contraction and the central dark matter density profile will steepen. For the second model, we assume the central galaxy is assembled by a series of dissipationless mergers of stellar clumps that have formed far from the nascent galaxy. In order to be accreted, these clumps lose their orbital energy to the dark matter halo via dynamical friction, thereby heating the central dark matter and smoothing the dark matter density cusp. The central dark matter density profiles differ drastically between these models. For the isolated elliptical galaxy, NGC 4494, the central dark matter densities follow the power-laws r^(-0.2) and r^(-1.7) for the dissipational and dissipationless models, respectively. By matching the dissipational and dissipationless models to observations of the stellar component of elliptical galaxies, we examine the relative contributions of dissipational and dissipationless mergers to the formation of elliptical galaxies and look for observational tests that will distinguish between these models. Comparisons to strong lensing brightest cluster galaxies yield median M*/L_B ratios of 2.1+/-0.8 and 5.2+/-1.7 at z=0.39 for the dissipational and dissipationless models, respectively. For NGC 4494, the best-fit dissipational and dissipationless models have M*/L_B=2.97 and 3.96. Comparisons to expected stellar mass-to-light ratios from passive evolution and population syntheses appear to rule out a purely dissipational formation mechanism for the central stellar regions of giant elliptical galaxies.
We formulate the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics. Using two-point statistics in projection, we define the galaxy bias function, b_g(r_p), and the galaxy-dark matter cross-correlation function, R_{gm}(r_p), where r_p is the projected distance. We use the analytical halo model to predict how the scale dependence of b_g and R_{gm}, over the range 0.1 Mpc/h < r_p < 30 Mpc/h, depends on the non-linearity and stochasticity in halo occupation models. In particular we quantify the effect due to the presence of central galaxies, the assumption for the radial distribution of satellite galaxies, the richness of the halo, and the Poisson character of the probability to have a certain number of satellite galaxies in a halo of a certain mass. Overall, brighter galaxies reveal a stronger scale dependence, and out to a larger radius. In real-space, we find that galaxy bias becomes scale independent, with R_{gm} = 1, for radii r > 1 - 5 Mpc/h, depending on luminosity. However, galaxy bias is scale-dependent out to much larger radii when one uses the projected quantities defined in this paper. These projected bias functions have the advantage that they are more easily accessible observationally and that their scale dependence carries a wealth of information regarding the properties of galaxy biasing. To observationally constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing we propose the use of the bias function Gamma_{gm}(r_p)=b_g(r_p)/R_{gm}(r_p). This function is obtained via a combination of weak gravitational lensing and galaxy clustering, and it can be measured using existing and forthcoming imaging and spectroscopic galaxy surveys.
Secondary halo properties beyond mass, such as the mass accretion rate (MAR), concentration, and the half mass scale, are essential in understanding the formation of large-scale structure and dark matter halos. In this paper, we study the impact of secondary halo properties on the galaxy-galaxy lensing observable, $DeltaSigma$. We build an emulator trained on N-body simulations to model $DeltaSigma$ and quantify the impact of different secondary parameters on the $DeltaSigma$ profile. We focus on the impact of MAR on $DeltaSigma$. We show that a 3$sigma$ detection of variations in MAR at fixed halo mass could be achieved with the Hyper Suprime Cam survey in combination with a proxy for MAR with scatter $sigma_{Gamma_mathrm{dyn}|mathrm{obs}}<1.5$. We show that the full radial profile of $DeltaSigma$ depends on secondary properties at fixed halo mass. Consequently, an emulator that can perform full shape fitting yields better than 2 times improvement upon the constraints on MAR than only using the outer part of the halo. Finally, we highlight that miscentering and MAR impact the radial profile of $DeltaSigma$ in a similar fashion, implying that miscentering and MAR need to be modeled jointly for unbiased estimates of both effects. We show that present-day lensing data sets have the statistical capability to place constraints on halo MAR. Our analysis opens up new possibilities for observationally measuring the assembly history of the dark matter halos that host galaxies and clusters.
Full ray-tracing maps of gravitational lensing, constructed from N-Body simulations, represent a fundamental tool to interpret present and future weak lensing data. However the limitation of computational resources and storage capabilities severely restrict the number of realizations that can be performed in order to accurately sample both the cosmic shear models and covariance matrices. In this paper we present a halo model formalism for weak gravitational lensing that alleviates these issues by producing weak-lensing mocks at a reduced computational cost. Our model takes as input the halo population within a desired light-cone and the linear power spectrum of the underlined cosmological model. We examine the contribution given by the presence of substructures within haloes to the cosmic shear power spectrum and quantify it to the percent level. Our method allows us to reconstruct high-resolution convergence maps, for any desired source redshifts, of light-cones that realistically trace the matter density distribution in the universe, account for masked area and sample selections. We compare our analysis on the same large scale structures constructed using ray-tracing techniques and find very good agreements both in the linear and non-linear regimes up to few percent levels. The accuracy and speed of our method demonstrate the potential of our halo model for weak lensing statistics and the possibility to generate a large sample of convergence maps for different cosmological models as needed for the analysis of large galaxy redshift surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا