Do you want to publish a course? Click here

A High Galactic Latitude HI 21cm-line Absorption Survey using the GMRT: I. Observations and Spectra

59   0   0.0 ( 0 )
 Added by Rekhesh Mohan
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| >15deg.) Galactic latitudes. The Declination coverage of the present survey is Decl. ~ -45deg.. With a mean rms optical depth of ~0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.

rate research

Read More

We have carried out a sensitive high-latitude (|b| > 15deg.) HI 21cm-line absorption survey towards 102 sources using the GMRT. With a 3-sigma detection limit in optical depth of ~0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at V(lsr) ~ 0 km/s with velocity dispersions of 7.6 +/- 0.3 km/s and 21 +/- 4 km/s respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 +/- 0.19, a mean HI column density of (1.46 +/- 1.03) X 10^{20} cm^{-2}, and a mean spin temperature of 121 +/- 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 +/- 0.02, a mean HI column density of (4.3 +/- 3.4) X 10^{19} cm^{-2}, and a mean spin temperature of 125 +/- 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.
We present 21-cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), a Karl G. Jansky Very Large Array (VLA) large project (~600 hours) for measuring the physical properties of Galactic neutral hydrogen (HI). 21-SPONGE is distinguished among previous Galactic HI studies as a result of: (1) exceptional optical depth sensitivity ($sigma_{tau} < 10^{-3}$ per $0.42rm,km,s^{-1}$ channels over 57 lines of sight); (2) matching 21 cm emission spectra with highest-possible angular resolution (~4) from the Arecibo Observatory; (3) detailed comparisons with numerical simulations for assessing observational biases. We autonomously decompose 21 cm spectra and derive the physical properties (i.e., spin temperature, $T_s$, column density) of the cold neutral medium (CNM; $T_s<250rm,K$), thermally unstable medium (UNM; $250< T_s < 1000rm,K$) and warm neutral medium (WNM; $T_s > 1000rm,K$) simultaneously. We detect 50% of the total HI mass in absorption, the majority of which is CNM (56 +/- 10%, corresponding to 28% of the total HI mass). Although CNM is detected ubiquitously, the CNM fraction along most lines of sight is <50%. We find that 20% of the total HI mass is thermally unstable (41 +/- 10% of HI detected in absorption), with no significant variation with Galactic environment. Finally, although the WNM comprises 52% of the total HI mass, we detect little evidence for WNM absorption with $1000<T_s<4000rm,K$. Following spectral modeling, we detect a stacked residual absorption feature corresponding to WNM with $T_ssim10^4rm,K$. We conclude that excitation in excess of collisions likely produces significantly higher WNM $T_s$ than predicted by steady-state models.
We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic H{sc i} 21cm absorption towards the quasar B0438$-$436, yielding the detection of wide, weak H{sc i} 21cm absorption, with a velocity-integrated H{sc i} 21cm optical depth of $0.0188 pm 0.0036$~km~s$^{-1}$. Comparing this with the H{sc i} column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of $3760 pm 365$~K, one of the highest measured in the Galaxy. This is consistent with most of the H{sc i} along the sightline arising in the stable warm neutral medium (WNM). The low peak H{sc i} 21cm optical depth towards B0438$-$436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the H{sc i} 21cm absorption and emission spectra. This yields a gas kinetic temperature of $rm T_k leq (4910 pm 1900)$~K, and a spin temperature of $rm T_s = (1000 pm 345)$~K for the gas that gives rise to the H{sc i} 21cm absorption. Our data are consistent with the H{sc i} 21cm absorption arising from either the stable WNM, with $rm T_s ll T_k$, $rm T_k approx 5000$~K, and little penetration of the background Lyman-$alpha$ radiation field into the neutral hydrogen, or from the unstable neutral medium, with $rm T_s approx T_k approx 1000;K$.
PASIPHAE (the Polar-Areas Stellar Imaging in Polarization High-Accuracy Experiment) is an optopolarimetric survey aiming to measure the linear polarization from millions of stars, and use these to create a three-dimensional tomographic map of the magnetic field threading dust clouds within the Milky Way. This map will provide invaluable information for future CMB B-mode experiments searching for inflationary gravitational waves, providing unique information regarding line-of-sight integration effects. Optical polarization observations of a large number of stars at known distances, tracing the same dust that emits polarized microwaves, can map the magnetic field between them. The Gaia mission is measuring distances to a billion stars, providing an opportunity to produce a tomographic map of Galactic magnetic field directions, using optical polarization of starlight. Such a map will not only boost CMB polarization foreground removal, but it will also have a profound impact in a wide range of astrophysical research, including interstellar medium physics, high-energy astrophysics, and evolution of the Galaxy. Taking advantage of the novel technology implemented in our high-accuracy Wide-Area Linear Optical Polarimeters (WALOPs) currently under construction at IUCAA, India, we will engage in a large-scale optopolarimetric program that can meet this challenge: a survey of both northern and southern Galactic polar regions targeted by CMB experiments, covering over 10,000 square degrees, which will measure linear optical polarization of over 360 stars per square degree (over 3.5 million stars, a 1000-fold increase over the state of the art). The survey will be conducted concurrently from the South African Astronomical Observatory in Sutherland, South Africa in the southern hemisphere, and the Skinakas Observatory in Crete, Greece, in the north.
We describe algorithms that detect 21cm line HI self-absorption (HISA) in large data sets and extract it for analysis. Our search method identifies HISA as spatially and spectrally confined dark HI features that appear as negative residuals after removing larger-scale emission components with a modified CLEAN algorithm. Adjacent HISA volume-pixels (voxels) are grouped into features in (l,b,v) space, and the HI brightness of voxels outside the 3-D feature boundaries is smoothly interpolated to estimate the absorption amplitude and the unabsorbed HI emission brightness. The reliability and completeness of our HISA detection scheme have been tested extensively with model data. We detect most features over a wide range of sizes, linewidths, amplitudes, and background levels, with poor detection only where the absorption brightness temperature amplitude is weak, the absorption scale approaches that of the correlated noise, or the background level is too faint for HISA to be distinguished reliably from emission gaps. False detection rates are very low in all parts of the parameter space except at sizes and amplitudes approaching those of noise fluctuations. Absorption measurement biases introduced by the method are generally small and appear to arise from cases of incomplete HISA detection. This paper is the third in a series examining HISA at high angular resolution. A companion paper (Paper II) uses our HISA search and extraction method to investigate the cold atomic gas distribution in the Canadian Galactic Plane Survey.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا