Do you want to publish a course? Click here

Comparing spectroscopic and photometric stellar mass estimates

73   0   0.0 ( 0 )
 Added by Niv Drory
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The purpose of this letter is to compare the quality of different methods for estimating stellar masses of galaxies. We compare the results of (a) fitting stellar population synthesis models to broad band colors from SDSS and 2MASS, (b) the analysis of spectroscopic features of SDSS galaxies (Kauffmann et al. 2003), and, (c) a simple dynamical mass estimate based on SDSS velocity dispersions and effective radii. Knowing that all three methods can have significant biases, a comparison can help to establish their (relative) reliability. In this way, one can also probe the quality of the observationally cheap broadband color mass estimators for galaxies at higher redshift. Generally, masses based on broad-band colors and spectroscopic features agree reasonably well, with a rms scatter of only ~ 0.25 dex over almost 4 decades in mass. However, as may be expected, systematic differences do exist and have an amplitude of ~ 0.15 dex, corrleting with Halpha emission strength. Interestingly, masses from broad-band color fitting are in better agreement with dynamical masses than masses based on the analysis of spectroscopic features. In addition, the differences between the latter and the dynamical masses correlate with Halpha equivalent width, while this much less the case for the broad-band masses. We conclude that broad band color mass estimators, provided they are based on a large enough wavelength coverage and use an appropriate range of ages, metallicities and dust extinctions, can yield fairly reliable stellar masses for galaxies. This is a very encouraging result as such mass estimates are very likely the only ones available at significant redshifts for some time to come.



rate research

Read More

112 - C. Grillo , R. Gobat , P. Rosati 2007
In this paper we compare two different diagnostics for estimating stellar masses in early-type galaxies and we establish their level of reliability. In particular, we consider the well-studied sample of 15 field elliptical galaxies selected from the Sloan Lens ACS (SLACS) Survey (z = 0.06-0.33). We examine here the correlation between the stellar mass values, enclosed inside the Einstein radius of each lens, based on analyses of lensing and stellar dynamics combined and based on multiwavelength photometry spectral template fitting. The lensing+dynamics stellar mass is obtained from the published SLACS Survey results, assuming a two-component density distribution model and a prior from the fundamental plane on the mass-to-light ratio for the lens galaxies. The photometric stellar mass is measured by fitting the observed spectral energy distribution of the galaxies (from the SDSS multi-band photometry over 354-913 nm) with composite stellar population templates, under the assumption that light traces stellar mass. The two methods are completely independent. They rely on several different assumptions, and so, in principle, both can have significant biases. Based on our sample of massive galaxies, we find consistency between the lensing+dynamics and the photometric mass estimates. We obtain a Pearson linear correlation coefficient of 0.94 and a median value of the ratio between the former and the latter mass measurements of 1.1+/-0.1. This suggests that both methods can separately yield reliable stellar masses of early-type galaxies, and confirms that photometric mass estimates are accurate, as long as optical/near-IR rest frame photometry is available.
80 - A. Rettura 2006
The purpose of this study is to explore the relationship between galaxy stellar masses, based on multiwavelength photometry spectral template fitting and dynamical masses based on published velocity dispersion measurements, for a sample of 48 early-type galaxies at z ~ 1 with HST/ACS morphological information. We determine photometric-stellar masses and perform a quantitative morphological analysis of cluster and field galaxies at redshift 0.6 < z < 1.2, using ground- and space-based multiwavelegth data available on the GOODS-S field and on the field around the X-ray luminous cluster RDCS1252.9-2927 at z = 1.24. We use multi-band photometry over 0.4-8um from HST/ACS, VLT/ISAAC and Spitzer/IRAC to estimate photometric-stellar masses using Composite Stellar Population (CSP) templates computed with PEGASE.2 models. We compare stellar masses with those obtained using CSPs built with Bruzual & Charlot and Maraston models. We then compare photometric-stellar mass and dynamical mass estimates as a function of morphological parameters obtained from HST/ACS imaging. Based on our sample, which spans the mass range log(Mphot)=[10, 11.5], we find that 1) PEGASE.2, BC03, M05 yield consistent photometric-stellar masses for early-type galaxies at z ~ 1 with a small scatter (0.15 dex rms); 2) adopting a Kroupa IMF, photometric-stellar masses match dynamical mass estimates for early-type galaxies with an average offset of 0.27 dex; 3) assuming a costant IMF, increasing dark matter fraction with the increasing galaxy mass can explain the observed trend.
We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF$$ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H$alpha$ analysis. We show that our H$alpha$ measurements are strongly correlated with photometry from the Microvariability and Oscillations of STars (MOST) instrument, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH$$ method, uses H$alpha$ measurements as input into the FF$$ model. While the Dalmatian spot modeling analysis and the FF$$ method with MOST space-based photometry are currently more robust, the HH$$ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH$$ method may prove quite useful in disentangling stellar signals.
We establish a quantitative relationship between photometric and spectroscopic detections of solar-like oscillations using ab initio, three-dimensional (3D), hydrodynamical numerical simulations of stellar atmospheres. We present a theoretical derivation as proof of concept for our method. We perform realistic spectral line formation calculations to quantify the ratio between luminosity and radial velocity amplitude for two case studies: the Sun and the red giant $epsilon$ Tau. Luminosity amplitudes are computed based on the bolometric flux predicted by 3D simulations with granulation background modelled the same way as asteroseismic observations. Radial velocity amplitudes are determined from the wavelength shift of synthesized spectral lines with methods closely resembling those used in BiSON and SONG observations. Consequently, the theoretical luminosity to radial velocity amplitude ratios are directly comparable with corresponding observations. For the Sun, we predict theoretical ratios of 21.0 and 23.7 ppm/[m/s] from BiSON and SONG respectively, in good agreement with observations 19.1 and 21.6 ppm/[m/s]. For $epsilon$ Tau, we predict K2 and SONG ratios of 48.4 ppm/[m/s], again in good agreement with observations 42.2 ppm/[m/s], and much improved over the result from conventional empirical scaling relations which gives 23.2 ppm/[m/s]. This study thus opens the path towards a quantitative understanding of solar-like oscillations, via detailed modelling of 3D stellar atmospheres.
Asteroseismology can provide joint constraints on masses and radii of individual stars. While this approach has been extensively tested for red giant branch (RGB) stars, it has been more difficult to test for helium core-burning red-clump (RC) giants because of the lack of fundamental calibrators. To provide independent mass estimates, we utilize a number of widely used horizontal-branch (HB) models in the literature, and derive photometric masses from a comparison with $griBVI_CJHK_s$ photometry. Our selected models disagree with each other on the predicted mass-luminosity-temperature relation. We adopt first-order corrections on colors and magnitudes to minimize the dispersion between different models by forcing models to match the observed location in the solar-metallicity cluster M67. Even for these calibrated models, however, the internal consistency between models deteriorates at higher metallicities, and photometric masses become smaller than asteroseismic masses, as seen from metal-rich field RC stars with Gaia parallaxes. Similarly, the average photometric mass for metal-rich NGC 6791 stars ranges from $0.7 M_odot$ to $1.1 M_odot$, depending on the specific set of models employed. An ensemble average of the photometric masses ($0.88pm0.16 M_odot$) in NGC 6791 is marginally consistent with the asteroseismic mass ($1.16pm0.04 M_odot$). There is a clear tension between the masses that one would predict from photometry for metal-rich field RC stars, asteroseismic masses, and those that would be expected from the ages of stars in the Galactic disk populations and canonical RGB mass loss. We conclude that standard RC models need to be re-examined in light of these powerful new data sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا