Do you want to publish a course? Click here

TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

266   0   0.0 ( 0 )
 Added by Robert White
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.



rate research

Read More

The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.
The Arizona Robotic Telescope Network (ARTN) project is a long term effort to develop a system of telescopes to carry out a flexible program of PI observing, survey projects, and time domain astrophysics including monitoring, rapid response, and transient/target-of-opportunity followup. Steward Observatory operates and shares in several 1-3m class telescopes with quality sites and instrumentation, largely operated in classical modes. Science programs suited to these telescopes are limited by scheduling flexibility and people-power of available observers. Our goal is to adapt these facilities for multiple co-existing queued programs, interrupt capability, remote/robotic operation, and delivery of reduced data. In the long term, planning for the LSST era, we envision an automated system coordinating across multiple telescopes and sites, where alerts can trigger followup, classification, and triggering of further observations if required, such as followup imaging that can trigger spectroscopy. We are updating telescope control systems and software to implement this system in stages, beginning with the Kuiper 61 and Vatican Observatory 1.8-m telescopes. The Kuiper 61 and its Mont4K camera can now be controlled and queue-scheduled by the RTS2 observatory control software, and operated from a remote room at Steward. We discuss science and technical requirements for ARTN, and some of the challenges in adapting heterogenous legacy facilities, scheduling, data pipelines, and maintaining capabilities for a diverse user base.
The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.
The First G-APD Cherenkov Telescope (FACT) became operational at La Palma in October 2011. Since summer 2012, due to very smooth and stable operation, it is the first telescope of its kind that is routinely operated from remote, without the need for a data-taking crew on site. In addition, many standard tasks of operation are executed automatically without the need for manual interaction. Based on the experience gained so far, some alterations to improve the safety of the system are under development to allow robotic operation in the future. We present the setup and precautions used to implement remote operations and the experience gained so far, as well as the work towards robotic operation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا