Do you want to publish a course? Click here

FACT: Towards Robotic Operation of an Imaging Air Cherenkov Telescope

136   0   0.0 ( 0 )
 Added by Adrian Biland
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The First G-APD Cherenkov Telescope (FACT) became operational at La Palma in October 2011. Since summer 2012, due to very smooth and stable operation, it is the first telescope of its kind that is routinely operated from remote, without the need for a data-taking crew on site. In addition, many standard tasks of operation are executed automatically without the need for manual interaction. Based on the experience gained so far, some alterations to improve the safety of the system are under development to allow robotic operation in the future. We present the setup and precautions used to implement remote operations and the experience gained so far, as well as the work towards robotic operation.



rate research

Read More

232 - T. Bretz , A. Biland , J. Buss 2014
Since more than two years, the First G-APD Cherenkov Telescope (FACT) is operating successfully at the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since properties as the gain of G-APDs depend on temperature and the applied voltage, a real-time feedback system has been developed and implemented. To correct for the change introduced by temperature, several sensors have been placed close to the photon detectors. Their read out is used to calculate a corresponding voltage offset. In addition to temperature changes, changing current introduces a voltage drop in the supporting resistor network. To correct changes in the voltage drop introduced by varying photon flux from the night-sky background, the current is measured and the voltage drop calculated. To check the stability of the G-APD properties, dark count spectra with high statistics have been taken under different environmental conditions and been evaluated. The maximum data rate delivered by the camera is about 240 MB/s. The recorded data, which can exceed 1 TB in a moonless night, is compressed in real-time with a proprietary loss-less algorithm. The performance is better than gzip by almost a factor of two in compression ratio and speed. In total, two to three CPU cores are needed for data taking. In parallel, a quick-look analysis of the recently recorded data is executed on a second machine. Its result is publicly available within a few minutes after the data were taken. [...]
In this paper we describe the different software and hardware elements of a mini-telescope for the detection of cosmic rays and gamma-rays using the Cherenkov light emitted by their induced particle showers in the atmosphere. We estimate the physics reach of the standalone mini-telescope and present some results of the measurements done at the Sauverny Observatory of the University of Geneva and at the Saint-Luc Observatory, which demonstrate the ability of the telescope to observe cosmic rays with energy above about 100 TeV. Such a mini-telescope can constitute a cost-effective out-trigger array that can surround other gamma-ray telescopes or extended air showers detector arrays. Its development was born out of the desire to illustrate to students and amateurs the cosmic ray and gamma-ray detection from ground, as an example of what is done in experiments using larger telescopes. As a matter of fact, a mini-telescope can be used in outreach night events. While outreach is becoming more and more important in the scientific community to raise interest in the general public, the realisation of the mini-telescope is also a powerful way to train students on instrumentation such as photosensors, their associated electronics, acquisition software and data taking. In particular, this mini-telescope uses silicon photomultipliers (SiPM) and the dedicated ASIC, CITIROC.
134 - H. Anderhub 2013
The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn.
Earth-skimming neutrinos are those which travel through the Earths crust at a shallow angle. For Ultra-High-Energy (E > 1 PeV; UHE) earth-skimming tau neutrinos, there is a high-probability that the tau lepton created by a neutrino-Earth interaction will emerge from the ground before it decays. When this happens, the decaying tau particle initiates an air shower of relativistic sub-atomic particles which emit Cherenkov radiation. To observe this Cherenkov radiation, we propose the Trinity Observatory. Using a novel optical structure design, pointing at the horizon, Trinity will observe the Cherenkov radiation from upward-going neutrino-induced air showers. Being sensitive to neutrinos in the 1-10,000 PeV energy range, Trinitys expected sensitivity will have a unique role to play filling the gap between the observed astrophysical neutrinos observed by IceCube and the expected sensitivity of radio UHE neutrino detectors.
131 - T.Bretz , H. Anderhub , M. Backes 2013
The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. The FACT collaboration is investigating with which precision these devices can be operated on the long-term. Currently, the telescope is successfully operated from remote and robotic operation is under development. During the past months of operation, the foreseen monitoring program of the brightest known TeV blazars has been carried out, and first physics results have been obtained including a strong flare of Mrk501. An instantaneous flare alert system is already in a testing phase. This presentation will give an overview of the project and summarize its goals, status and first results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا