No Arabic abstract
We present simultaneous spectral and photometric observations of SDSS J123813.73-033933.0. From Ha radial velocity measurements we determined the orbital period of the system to be 0.05592+/-0.00002 days (80.53 min). The spectrum shows double Balmer emission lines flanked by strong, broad absorption, indicating a dominant contribution from the white dwarf. The photometric light curve shows complex variability. The system undergoes cyclic brightening up to 0.4 mag which are semi-periodical on short time scales with periods of the order of 7-12 hours. We also detect 40.25 min variability (~0.15 mag) in the light curve, that corresponds to half the orbital period. Its amplitude increases with the cyclic brightening of the system.
We present infrared JHK photometry of the cataclysmic variable SDSS J123813.73-033933.0 (SDSS1238)and analyze it along with optical spectroscopy, demonstrating that the binary system is most probably comprised of a massive white dwarf with Teff=12000+/-1000 K and a brown dwarf of spectral type L4. The inferred system parameters suggest that this system may have evolved beyond the orbital period minimum and is a bounce-back system. SDSS1238 stands out among CVs by exhibiting the cyclical variability (brightenings). These are not related to specific orbital phases of the binary system and are fainter than dwarf novae outbursts, that usually occur on longer timescales. This phenomenon has not been observed extensively and, thus, is poor understood. The new time-resolved, multi-longitude photometric observations of SDSS1238 allowed us to observe two consecutive brightenings and to determine their recurrence time. The period analysis of all observed brightenings during 2007 suggests a typical timescale that is close to a period of ~9.3 hours. However, the brightenings modulation is not strictly periodic, possibly maintaining coherence only on timescales of several weeks. The characteristic variability with double orbital frequency that clearly shows up during brightenings is also analyzed. The Doppler mapping of the system shows the permanent presence of a spiral arm pattern in the accretion disk. A simple model is presented to demonstrate that spiral arms in the velocity map appear at the location and phase corresponding to the 2:1 resonance radius and constitute themselves as a double-humped light curves. The long-term and short-term variability of this CV is discussed together with the spiral arm structure of an accretion disk in the context of observational effects taking place in bounce-back systems.
We present here results of an optical spectroscopic study of a new Cataclysmic Variable SDSS J001856.93+345444.3. We demonstrate that the most probable value of the orbital period of the system is Porb = 0.6051 pm 0.022 days (=14.5226 hours), based on the measurements of radial velocity of a complex of absorption features emanating from the K2-K4V type secondary component. However, the radial velocity measurements from the emission lines are best folded with the period Pem = 0.5743day (=13.78 hours). The gamma-velocity of the emission lines varies significantly from epoch to epoch. There is an underlying broader and weaker component to the emission lines, which we could not resolve. Based on the appearance of the emission lines, the presence of very strong He II lines and the moderate polarization detected by Dillon et al. (2008), we conclude that SDSS J0018+3454 is an asynchronous magnetic CV (Polar).
We consider a recently-proposed alternative explanation of the CV period gap in terms of a revised mass-radius relation for the lower main sequence. We show that no such thermal-equilibrium relation is likely to produce a true gap. Using population synthesis techniques we calculate a model population that obeys the claimed equilibrium mass-radius relation. A theoretical period histogram obtained from this population shows two prominent period spikes rather than a gap. We consider also recent arguments suggesting that the period gap itself may not be real. We argue that, far from demonstrating a weakness of the interrupted-braking picture, the fact that most CV subtypes prefer one side of the gap or the other is actually an expected consequence of it.
The standard picture of CV secular evolution predicts a spike in the CV distribution near the observed short-period cutoff P_0 ~ 78 min, which is not observed. We show that an intrinsic spread in minimum (`bounce) periods P_b resulting from a genuine difference in some parameter controlling the evolution can remove the spike without smearing the sharpness of the cutoff. The most probable second parameter is different admixtures of magnetic stellar wind braking (at up to 5 times the GR rate) in a small tail of systems, perhaps implying that the donor magnetic field strength at formation is a second parameter specifying CV evolution. We suggest that magnetic braking resumes below the gap with a wide range, being well below the GR rate in most CVs, but significantly above it in a small tail.
We present high-precision photometry of the hypervelocity star SDSS J090745.0+024507 (HVS), which has a Galactic rest-frame radial velocity of v=709 km/s, and so has likely been ejected from the supermassive black hole in the Galactic center. Our data were obtained on two nights using the MMT 6.5m telescope, and is supplemented by lower precision photometry obtained on four nights using the FLWO 1.2m telescope. The high-precision photometry indicates that the HVS is a short-period, low-amplitude variable, with period P=0.2-2 days and amplitude A = 2-10%. Together with the known effective temperature of T_eff ~ 10,500 K (spectral type B9), this variability implies that the HVS is a member of the class of slowly pulsating B-type main sequence stars, thus resolving the previously-reported two-fold degeneracy in the luminosity and distance of the star. The HVS has a heliocentric distance of 71 kpc, and an age of ~0.35 Gyr. The time of ejection from the center of the Galaxy is < 100 Myr, and thus the existence of the OS constitutes observational evidence of a population of young stars in the proximity of the central supermassive black hole ~0.1 Gyr ago. It is possible that the HVS was a member of a binary that was tidally disrupted by the central black hole; we discuss constraints on the properties of the companions orbit.