Do you want to publish a course? Click here

The cosmological significance of Low Surface Brightness galaxies found in a deep blind neutral-hydrogen survey

70   0   0.0 ( 0 )
 Added by R. F. Minchin
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have placed limits on the cosmological significance of gas-rich low surface-brightness (LSB) galaxies as a proportion of the total population of gas-rich galaxies by carrying out a very deep survey (HIDEEP) for neutral hydrogen (HI) with the Parkes multibeam system. Such a survey avoids the surface-brightness selection effects that limit the usefulness of optical surveys for finding LSB galaxies. To complement the HIDEEP survey we have digitally stacked eight 1-hour R-band Tech Pan films from the UK Schmidt Telescope covering 36 square degrees of the survey area to reach a very deep isophotal limit of 26.5 R mag/sq. arcsec. At this level, we find that all of the 129 HI sources within this area have optical counterparts and that 107 of them can be identified with individual galaxies. We have used the properties of the galaxies identified as the optical counterparts of the HI sources to estimate the significance of LSB galaxies (defined to be those at least 1.5 magnitudes dimmer in effective surface-brightness than the peak in the observed distribution seen in optical surveys). We calculate the contribution of LSB galaxies to the total number, neutral hydrogen density, luminosity density, baryonic mass density, dynamical mass density and cross-sectional area of gas-rich galaxies. We do not find any `Crouching Giant LSB galaxies such as Malin 1, nor do we find a population of extremely low surface-brightness galaxies not previously found by optical surveys. Such objects must either be rare, gas-poor or outside the survey detection limits.



rate research

Read More

We present atomic hydrogen (HI) observations using the Robert C. Byrd Green Bank Telescope along the lines-of-sight to 27 low surface brightness (LSB) dwarf galaxy candidates discovered in optical searches around M101. We detect HI reservoirs in 5 targets and place stringent upper limits on the remaining 22, implying that they are gas poor. The distances to our HI detections range from 7 Mpc --150 Mpc, demonstrating the utility of wide-bandpass HI observations as a follow-up tool. The systemic velocities of 3 detections are consistent with that of the NGC~5485 group behind M101, and we suggest that our 15 non-detections with lower distance limits from the optical are associated with and have been stripped by that group. We find that the gas richnesses of confirmed M101 satellites are broadly consistent with those of the Milky Way satellites, as well as with those of satellites around other hosts of comparable mass, when survey completeness is taken into account. This suggests that satellite quenching and gas stripping proceeds similarly around halos of similar mass, in line with theoretical expectations.
140 - M. J. Drinkwater 1998
We are using the 2dF spectrograph to make a survey of all objects (`stars and `galaxies) in a 12 sq.deg region towards the Fornax cluster. We have discovered a population of compact emission-line galaxies unresolved on photographic sky survey plates and therefore missing in most galaxy surveys based on such material. These galaxies are as luminous as normal field galaxies. Using H-alpha to estimate star formation they contribute at least an additional 5 per cent to the local star formation rate.
We report on a search for faint (R total magnitude fainter than 21) and low surface brightness galaxies (R central surface brightness fainter than ~24) (fLSBs) in a 0.72x0.82 deg2 area centered on the Coma cluster. We analyzed deep B and R band CCD imaging obtained using the CFH12K camera at CFHT and found 735 fLSBs. The total B magnitudes, at the Coma cluster redshift, range from -13 to -9 with B central surface brightness as faint as 27 mag/arcsec2. Using empty field comparisons, we show that most of these fLSBs are probably inside the Coma cluster. We present the results of comparing the projected fLSB distributions with the distributions of normal galaxies and with known X-ray over densities. We also investigate their projected distribution relative to their location in the color magnitude relation. Colors of fLSBs vary between B-R~0.8 and ~1.4 for 2/3 of the sample and this part is consistent with the known CMR red-sequence for bright (R<18) ellipticals in Coma. These fLSBs are likely to have followed the same evolution as giant ellipticals, which is consistent with a simple feedback/collapse formation and a passive evolution. These fLSBs are mainly clustered around NGC4889. We found two other distinct fLSB populations. These populations have respectively redder and bluer colors compared to the giant elliptical red-sequence and possibly formed from stripped faint ellipticals and material stripped from spiral in-falling galaxies.
We have carried out an extremely long integration-time (9000 s/beam) 21-cm blind survey of 60 square degrees in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as sqrt(t) throughout, enabling us to reach an HI column-density limit of 4.2 x 10^18 cm^-2 for galaxies with a velocity width of 200 km/s in the central 32 square degree region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec^-2 (~27.5 B mag arcsec^-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column-densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column-density of N_HI = 10^(20.65 +/- 0.38). This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on N_HI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high M_HI/L_B. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.
We present deep, pointed $^{12}$CO($J=2-1$) observations of three late-type LSB galaxies. The beam-size was small enough that we could probe different environments (HI maximum, HI mininum, star forming region) in these galaxies. No CO was found at any of the positions observed. We argue that the implied lack of molecular gas is real and not caused by conversion factor effects. The virtual absence of a molecular phase may explain the very low star formation rates in these galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا