No Arabic abstract
We present first results from the Palomar Adaptive Optics Survey of Young Stars conducted at the Hale 5 m telescope. Through direct imaging we have discovered a brown dwarf and two low-mass stellar companions to the young solar-type stars HD 49197, HD 129333 (EK Dra), and V522 Per, and confirmed a previously suspected companion to RX J0329.1+0118 (Sterzik et al. 1997), at respective separations of 0.95 (43 AU), 0.74 (25 AU), 2.09 (400 AU), and 3.78 (380 AU). Physical association of each binary system is established through common proper motion and/or low-resolution infrared spectroscopy. Based on the companion spectral types, we estimate their masses at 0.06, 0.20, 0.13, and 0.20 Msun, respectively. From analysis of our imaging data combined with archival radial velocity data, we find that the spatially resolved companion to HD 129333 is potentially identical to the previously identified spectroscopic companion to this star (Duquennoy & Mayor 1991). However, a discrepancy with the absolute magnitude suggests that the two companions could also be distinct, with the resolved one being the outermost component of a triple system. The brown dwarf HD 49197B is a new member of a growing list of directly imaged sub-stellar companions at 10-1000 AU separations from main sequence stars, indicating that such brown dwarfs may be more common than initially speculated.
We report initial results from IRAC observations of four young stellar clusters. These regions are part of a larger Spitzer survey of 31 young stellar groups and clusters within 1 kpc of the Sun. In each of the four clusters, there are between 39 and 85 objects with colors inconsistent with reddened stellar photospheres. We identify these objects as young stars with significant emission from circumstellar dust. Applying an analysis developed in a companion paper (Allen et al. 2004), we classify these objects as either pre-main sequence stars with disks (class II) or protostellar objects (class I). These show that the sites of recent star formation are distributed over multi-parsec size scales. In two clusters, Cepheus C and S140, we find protostars embedded in filamentary dark clouds seen against diffuse emission in the IRAC bands.
We present results from an adaptive optics survey for substellar and stellar companions to Sun-like stars. The survey targeted 266 F5-K5 stars in the 3Myr to 3Gyr age range with distances of 10-190pc. Results from the survey include the discovery of two brown dwarf companions (HD49197B and HD203030B), 24 new stellar binaries, and a triple system. We infer that the frequency of 0.012-0.072Msun brown dwarfs in 28-1590AU orbits around young solar analogs is 3.2% (+3.1%,-2.7%; 2sigma limits). The result demonstrates that the deficiency of substellar companions at wide orbital separations from Sun-like stars is less pronounced than in the radial velocity brown dwarf desert. We infer that the mass distribution of companions in 28-1590AU orbits around solar-mass stars follows a continuous dN/dM_2 ~ M_2^(-0.4) relation over the 0.01-1.0Msun secondary mass range. While this functional form is similar to that for <0.1Msun isolated objects, over the entire 0.01-1.0Msun range the mass functions of companions and of isolated objects differ significantly. Based on this conclusion and on similar results from other direct imaging and radial velocity companion surveys in the literature, we argue that the companion mass function follows the same universal form over the entire range between 0-1590AU in orbital semi-major axis and 0.01-20Msun in companion mass. In this context, the relative dearth of substellar versus stellar secondaries at all orbital separations arises naturally from the inferred form of the companion mass function.
We report the results of VLT and Keck adaptive optics surveys of known members of the Eta Chamaeleontis, MBM 12, and TW Hydrae (TWA) associations to search for close companions. The multiplicity statistics of Eta Cha, MBM 12, and TWA are quite high compared with other clusters and associations, although our errors are large due to small number statistics. We have resolved S18 in MBM 12 and RECX 9 in Eta Cha into triples for the first time. The tight binary TWA 5Aab in the TWA offers the prospect of measuring the dynamical masses of both components as well as an independent distance to the system within a few years. The AO detection of the close companion to the nearby young star Chi^1 Orionis, previously inferred from radial velocity and astrometric observations, has already made it possible to derive the dynamical masses of that system without any astrophysical assumption.
It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [X$_alpha$/H] and [X$_{rm Fe}$/H] peak abundances remain at $sim -0.1$~dex and $sim +0.15$~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, $m_C sin i$, of the most-massive substellar companion in each system, and we find a maximum in $alpha$-element as well as Fe-peak abundances at $m_C sin i sim 1.35pm 0.20$ jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.
The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by conducting observations of the close 0farcs1 brown dwarf binary GJ569Bab. We took 50000 $I$-band images with our LI instrument FastCam attached to NAOMI, the 4.2-m William Herschel Telescope (WHT) AO facility. In order to extract the most of the astrometry and photometry of the GJ569Bab system we have resorted to a PSF fitting technique using the primary star GJ569A as a suitable PSF reference which exhibits an $I$-band magnitude of $7.78pm0.03$. The AO+LI observations at WHT were able to resolve the binary system GJ569Bab located at $4farcs 92 pm 0farcs05$ from GJ569A. We measure a separation of $98.4 pm 1.1$ mas and $I$-band magnitudes of $13.86 pm 0.03$ and $14.48 pm 0.03$ and $I-J$ colors of 2.72$pm$0.08 and 2.83$pm$0.08 for the Ba and Bb components, respectively. Our study rules out the presence of any other companion to GJ569A down to magnitude I$sim$ 17 at distances larger than 1arcsec. The $I-J$ colors measured are consistent with M8.5-M9 spectral types for the Ba and Bb components. The available dynamical, photometric and spectroscopic data are consistent with a binary system with Ba being slightly (10-20%) more massive than Bb. We obtain new orbital parameters which are in good agreement with those in the literature.