Do you want to publish a course? Click here

An X-ray Outburst from the Rapidly Accreting Young Star That Illuminates McNeils Nebula

63   0   0.0 ( 0 )
 Added by Joel Kastner
 Publication date 2004
  fields Physics
and research's language is English
 Authors J.H. Kastner




Ask ChatGPT about the research

Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of such emission is uncertain. Although many or perhaps most recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor ~50 increase in the X-ray flux from a young star that is presently undergoing a spectacular optical/IR outburst. The outburst is thought to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/IR eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion- enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent accretion flood.



rate research

Read More

72 - N. Grosso 2005
We report a ~38 ks X-ray observation of McNeils Nebula obtained with XMM on 2004 April 4. V1647 Ori, the young star in outburst illuminating McNeils Nebula, is detected with XMM and appears variable in X-rays. We investigate the hardness ratio variability and time variations of the event energy distribution with quantile analysis, and show that the large increase of the count rate from V1647 Ori observed during the second half of the observation is not associated with any large plasma temperature variations as for typical X-ray flares from young low-mass stars. X-ray spectral fitting shows that the bulk (~75%) of the intrinsic X-ray emission in the 0.5-8 keV energy band comes from a soft plasma component (0.9 keV) reminiscent of the X-ray spectrum of the classical T Tauri star TW Hya, for which X-ray emission is believed to be generated by an accretion shock onto the photosphere of a low-mass star. The hard plasma component (4.2 keV) contributes ~25% of the total X-ray emission, and can be understood only in the framework of plasma heating sustained by magnetic reconnection events. We find a hydrogen column density of NH=4.1E22 cm-2, which points out a significant excess of hydrogen column density compared to the value derived from optical/IR observations, consistent with the picture of the rise of a wind/jet unveiled from ground optical spectroscopy. The X-ray flux observed with XMM ranges from roughly the flux observed by Chandra on 2004 March 22 (~10 times greater than the pre-outburst X-ray flux) to a value two times greater than that caught by Chandra on 2004 March 7 (~200 times greater than the pre-outburst X-ray flux). We have investigated the possibility that V1647 Ori displays a periodic variation in X-ray brightness as suggested by the combined Chandra+XMM data set (abridged).
110 - D.K. Ojha , S.K. Ghosh , A. Tej 2006
We present a detailed study of the post-outburst phase of McNeils nebula (V1647 Ori) using optical B,V,R,I and NIR J,H,K photometric and low resolution optical spectroscopic observations. The observations were carried out with the HFOSC, NIRCAM, TIRCAM and NICMOS cameras on the 2m HCT and 1.2m PRL telescopes during the period 2004 Feb-2005 Dec. The optical/NIR observations show a general decline in brightness of the exciting source of McNeils nebula (V1647 Ori). Our recent optical images show that V1647 Ori has faded by more than 3 mags since Feb 2004. The optical/NIR photometric data also show a significant variation in the mags (Delta V = 0.78 mag, Delta R = 0.44 mag, Delta I = 0.21 mag, Delta J = 0.24 mag and Delta H = 0.20 mag) of V1647 Ori within a period of one month, which is possibly undergoing a phase similar to eruptive variables, like EXors or FUors. The optical spectra show a few features such as strong Halpha emission with blue-shifted absorption and the CaII IR triplet (8498A, 8542A and 8662A) in emission. As compared to the period just after outburst, there is a decrease in the depth and extent of the blue-shifted absorption component, indicating a weakening in the powerful stellar wind. The presence of the CaII IR triplet in emission confirms that V1647 Ori is a PMS star. The long-term, post-outburst photometric observations of V1647 Ori suggest an EXor, rather than an FUor event. An optical/IR comparison of the region surrounding McNeils nebula shows that the optical nebula is more widely and predominantly extended to the north, whereas the IR nebula is relatively confined (dia ~ 60 arcsec), but definitely extended, to the south, too.
110 - S. Vig 2005
We present post-outburst (~ 100 days after outburst) radio continuum observation of the region (~ 30 x 30) around McNeils nebula (V1647 Orionis). The observations were carried out using the Giant Metrewave Radio Telescope (GMRT), India, at 1272 MHz on 2004 Feb 14.5 UT. Although 8 sources have been detected within a circular diameter of 25 centred on V1647 Ori, we did not detect any radio continuum emission from McNeils nebula. We assign a 5-sigma upper limit of 0.15 mJy/beam for V1647 Ori where the beam size is 5.6 x 2.7. Even at higher frequencies of 4.9 and 8.5 GHz (VLA archival data), no radio emission has been detected from this region. Three scenarios namely, emission from homogeneous HII region, ionised stellar wind and shock ionised gas, are explored in the light of our GMRT upper-limit. For the case of homogeneous HII region, the radius of the emitting region is constrained to be <~ 26 AU corresponding to a temperature >~ 2,500 K, which is consistent with the reported radio and H-alpha emission. In the ionised stellar wind picture, our upper limit of radio emission translates to the ratio of mass loss rate and terminal velocity, (M_dot/v_infinity) < 1.2-1.8 x 10^(-10) (M_sun/yr)/(km/s). On the other hand, if the stellar wind shocks the dense neutral (molecular) cloud, the radio upper limit implies that the fraction of the wind encountering the dense obstacle is <50%. Based on a recent measurement of X-ray outburst and later monitoring, the expected radio emission has been estimated. Using our radio limit, the radius (<~ 36 AU) and electron density (>~ 7.2 x 10^7 cm^(-3) of the radio emitting plasma have been constrained using a two phase medium in pressure equilibrium for a volume filling factor of 0.9.
We present a detailed study of McNeils nebula (V1647 Ori) in its ongoing outburst phase starting from September 2008 to March 2013. Our 124 nights of photometric observations were carried out in optical V, R, I and near-infrared J, H, K bands, and 59 nights of medium resolution spectroscopic observations were done in 5200 - 9000 Ang wavelength range. All observations were carried out with 2-m Himalayan Chandra Telescope and 2-m IUCAA Girawali Telescope. Our observations show that over last four and a half years, V1647 Ori and the region C near Herbig-Haro object, HH 22A, have been undergoing a slow dimming at a rate of ~0.04 mag/yr and ~0.05 mag/yr respectively in R-band, which is 6 times slower than the rate during similar stage of V1647 Ori in 2003 outburst. We detected change in flux distribution over the reflection nebula implying changes in circumstellar matter distribution between 2003 and 2008 outbursts. Apart from steady wind of velocity ~350 km/s we detected two episodic magnetic reconnection driven winds. Forbidden [O I] 6300 Ang and [Fe II] 7155 Ang lines were also detected implying shock regions probably from jets. We tried to explain the outburst timescales of V1647 Ori using the standard models of FUors kind of outburst and found that pure thermal instability models like Bell & Lin (1994) cannot explain the variations in timescales. In the framework of various instability models we conclude that one possible reason for sudden ending of 2003 outburst in 2005 November was due to a low density region or gap in the inner region (~ 1 AU) of the disc.
137 - M. Bachetti 2014
Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} < L_X$(0.5 - 10 keV) $<10^{40}$ erg s$^{-1}$. Since higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end ($L_X$ > $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 times 10^{40}$ erg s$^{-1}$. This association implies a luminosity ~100 times the Eddington limit for a 1.4 solar mass object, or more than ten times brighter than any known accreting pulsar. This finding implies that neutron stars may not be rare in the ULX population, and it challenges physical models for the accretion of matter onto magnetized compact objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا