Do you want to publish a course? Click here

An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

139   0   0.0 ( 0 )
 Added by Matteo Bachetti
 Publication date 2014
  fields Physics
and research's language is English
 Authors M. Bachetti




Ask ChatGPT about the research

Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} < L_X$(0.5 - 10 keV) $<10^{40}$ erg s$^{-1}$. Since higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end ($L_X$ > $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 times 10^{40}$ erg s$^{-1}$. This association implies a luminosity ~100 times the Eddington limit for a 1.4 solar mass object, or more than ten times brighter than any known accreting pulsar. This finding implies that neutron stars may not be rare in the ULX population, and it challenges physical models for the accretion of matter onto magnetized compact objects.



rate research

Read More

Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any X-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43~s in 2003 to 1.13~s in 2014. It has an isotropic peak luminosity of about 1000 times the Eddington limit for a NS at 17.1~Mpc. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity > 10^{41} erg/s) might harbor NSs.
Magnetic field of accreting neutron stars determines their overall behaviour including the maximum possible luminosity. Some models require an above-average magnetic field strength (> 10^13 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached ~2.5x10^39 erg/s comparable to that in ULXs thus making this source the nearest ULX-pulsar. SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016 - February 2017. The source has been observed during the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Spin evolution of the source during and between the outbursts and the luminosity of the transition to so-called propeller regime in the range of (0.3 - 7)x10^35 erg/s imply relatively weak dipole field of (1 - 5)x10^12 G. On the other hand, there is also evidence for much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with cease of the accretion column, absence of cyclotron absorption features in the broadband X-ray spectrum of the source obtained with NuSTAR and very high peak luminosity favor an order of magnitude stronger field. This discrepancy makes SMC X-3 a good candidate to posses significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.
Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to AGN broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1s X-rays are variable on a timescale of a few hundred seconds (RMS of 9.0$pm$0.5%), the optical emission does not show any statistically significant variations. We set a 3$sigma$ upper limit on the RMS optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected RMS optical variability is $approx$2% which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3$sigma$) for optical variability on a $sim$ 24 hour timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels and longer simultaneous observations will be required to reach the optical variability levels similar to X-ray binaries.
Although ultra-luminous X-ray sources (ULX) are important for astrophysics due to their extreme apparent super-Eddington luminosities, their nature is still poorly known. Theoretical and observational studies suggest that ULXs could be a diversified group of objects composed of low-mass X-ray binaries, high-mass X-ray binaries and marginally also systems containing intermediate-mass black holes, which is supported by their presence in a variety of environments. Observational data on the ULX donors could significantly boost our understanding of these systems, but only a few were detected. There are several candidates, mostly red supergiants (RSGs), but surveys are typically biased toward luminous near-infrared objects. Nevertheless, it is worth exploring if RSGs can be members of ULX binaries. In such systems matter accreted onto the compact body would have to be provided by the stellar wind of the companion, since a Roche-lobe overflow could be unstable for relevant mass-ratios. Here we present a comprehensive study of the evolution and population of wind-fed ULXs and provide a theoretical support for the link between RSGs and ULXs. Our estimated upper limit on contribution of wind-fed ULX to the overall ULX population is $sim75$--$96%$ for young ($<100$ Myr) star forming environments, $sim 49$--$87%$ for prolonged constant star formation (e.g., disk of Milky Way), and $lesssim1%$ for environments in which star formation ceased long time ($>2$ Gyr) ago. We show also that some wind-fed ULXs (up to $6%$) may evolve into merging double compact objects (DCOs), but typical systems are not viable progenitors of such binaries because of their large separations. We demonstrate that, the exclusion of wind-fed ULXs from population studies of ULXs, might have lead to systematical errors in their conclusions.
Ultraluminous X-ray sources (ULXs) are extragalactic X-ray emitters located off-center of their host galaxy and with a luminosity in excess of a few ${10^{39}text{ erg s}^{-1}}$, if emitted isotropically. The discovery of periodic modulation revealed that in some ULXs the accreting compact object is a neutron star, indicating luminosities substantially above their Eddington limit. The most extreme object in this respect is ${NGC 5907~ULX-1}$ (ULX1), with a peak luminosity that is 500 times its Eddington limit. During a Chandra observation to probe a low state of ULX1, we detected diffuse X-ray emission at the position of ULX1. Its diameter is $2.7 pm 1.0$ arcsec and contains 25 photons, none below 0.8 keV. We interpret this extended structure as an expanding nebula powered by the wind of ULX1. Its diameter of about ${200text{ pc}}$, characteristic energy of ${sim 1.9text{ keV}}$, and luminosity of ${sim 2times10^{38}text{ erg s}^{-1}}$ imply a mechanical power of ${1.3times10^{41}text{ erg s}^{-1}}$ and an age ${sim 7 times 10^{4}text{ yr}}$. This interpretation suggests that a genuinely super-Eddington regime can be sustained for time scales much longer than the spin-up time of the neutron star powering the system. As the mechanical power from a single ULX nebula can rival the injection rate of cosmic rays of an entire galaxy, ULX nebulae could be important cosmic ray accelerators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا