No Arabic abstract
The Spitzer Space Telescope was used to study the mid-infrared to far-infrared properties of NGC 300, and to compare dust emission to Halpha to elucidate the heating of the ISM and the star formation cycle at scales < 100 pc. The new data allow us to discern clear differences in the spatial distribution of 8 micron dust emission with respect to 24 micron dust and to HII regions traced by the Halpha light. The 8 micron emission highlights the rims of HII regions, and the 24 micron emission is more strongly peaked in star forming regions than at 8 microns. We confirm the existence and approximate amplitude of interstellar dust emission at 4.5 microns, detected statistically in Infrared Space Observatory (ISO) data, and conclude it arises in star forming regions. When averaging over regions larger than ~ 1 kpc, the ratio of Halpha to Aromatic Feature emission in NGC 300 is consistent with the values observed in disks of spiral galaxies. The mid-to-far-infrared spectral energy distribution of dust emission is generally consistent with pre-Spitzer models.
The Garching-Bonn Deep Survey (GaBoDS) is a virtual 12 square degree cosmic shear and cluster lensing survey, conducted with the
[email protected] MPG/ESO telescope at La Silla. It consists of shallow, medium and deep random fields taken in R-band in subarcsecond seeing conditions at high galactic latitude. A substantial amount of the data was taken from the ESO archive, by means of a dedicated ASTROVIRTEL program. In the present work we describe the main characteristics and scientific goals of GaBoDS. Our strategy for mining the ESO data archive is introduced, and we comment on the Wide Field Imager data reduction as well. In the second half of the paper we report on clusters of galaxies found in the background of NGC 300, a random archival field. We use weak gravitational lensing and the red cluster sequence method for the selection of these objects. Two of the clusters found were previously known and already confirmed by spectroscopy. Based on the available data we show that there is significant evidence for substructure in one of the clusters, and an increasing fraction of blue galaxies towards larger cluster radii. Two other mass peaks detected by our weak lensing technique coincide with red clumps of galaxies. We estimate their redshifts and masses.
NGC 300 ULX1 is the fourth to be discovered in the class of the ultra-luminous X-ray pulsars. Pulsations from NGC 300 ULX1 were discovered during simultaneous XMM-Newton / NuSTAR observations in Dec. 2016. The period decreased from 31.71 s to 31.54 s within a few days, with a spin-up rate of -5.56 x 10^{-7} s s^{-1}, likely one of the largest ever observed from an accreting neutron star. Archival Swift and NICER observations revealed that the period decreased exponentially from ~45 s to ~17.5 s over 2.3 years. The pulses are highly modulated with a pulsed fraction strongly increasing with energy and reaching nearly 80% at energies above 10keV. The X-ray spectrum is described by a power-law and a disk black-body model, leading to a 0.3-30 keV unabsorbed luminosity of 4.7 x 10^{39} erg s^{-1}. The spectrum from an archival XMM-Newton observation of 2010 can be explained by the same model, however, with much higher absorption. This suggests, that the intrinsic luminosity did not change much since that epoch. NGC 300 ULX1 shares many properties with supergiant high mass X-ray binaries, however, at an extreme accretion rate.
We present new H-band echelle spectra, obtained with the NIRSPEC spectrograph at Keck II, for the massive star cluster B in the nearby dwarf irregular galaxy NGC 1569. From spectral synthesis and equivalent width measurements we obtain abundances and abundance patterns. We derive an Fe abundance of [Fe/H]=-0.63+/-0.08, a super-solar [alpha/Fe] abundance ratio of +0.31+/-0.09, and an O abundance of [O/H]=-0.29+/-0.07. We also measure a low 12C/13C = 5+/-1 isotopic ratio. Using archival imaging from the Advanced Camera for Surveys on board HST, we construct a colour-magnitude diagram (CMD) for the cluster in which we identify about 60 red supergiant (RSG) stars, consistent with the strong RSG features seen in the H-band spectrum. The mean effective temperature of these RSGs, derived from their observed colours and weighted by their estimated H-band luminosities, is 3790 K, in excellent agreement with our spectroscopic estimate of Teff = 3800+/-200 K. From the CMD we derive an age of 15-25 Myr, slightly older than previous estimates based on integrated broad-band colours. We derive a radial velocity of -78+/-3 km/s and a velocity dispersion of 9.6+/-0.3 km/s. In combination with an estimate of the half-light radius of 0.20+/-0.05 from the HST data, this leads to a dynamical mass of (4.4+/-1.1)E5 Msun. The dynamical mass agrees very well with the mass predicted by simple stellar population models for a cluster of this age and luminosity, assuming a normal stellar IMF. The cluster core radius appears smaller at longer wavelengths, as has previously been found in other extragalactic young star clusters.
We investigate the star formation threshold in NGC 6822, a nearby Local Group dwarf galaxy, on sub-kpc scales using high-resolution, wide-field, deep HI, Halpha and optical data. In a study of the HI velocity profiles we identify a cool and warm neutral component in the Interstellar Medium of NGC 6822. We show that the velocity dispersion of the cool component (~4 km/s) when used with a Toomre-Q criterion gives an optimal description of ongoing star formation in NGC 6822, superior to that using the more conventional dispersion value of 6 km/s. However, a simple constant surface density criterion for star formation gives an equally superior description. We also investigate the two-dimensional distribution of Q and the star formation threshold and find that these results also hold locally. The range in gas density in NGC 6822 is much larger than the range in critical density, and we argue that the conditions for star formation in NGC 6822 are fully driven by this density criterion. Star formation is local, and in NGC 6822 global rotational or shear parameters are apparently not important.
SN2010da/NGC 300 ULX-1 was first detected as a supernova impostor in May 2010 and was recently discovered to be a pulsating ultraluminous X-ray source. In this letter, we present VLT/X-shooter spectra of this source obtained in October 2018, covering the wavelength range 350-2300 nm. The $J$- and $H$-bands clearly show the presence of a red supergiant donor star that is best matched by a MARCS stellar atmosphere with $T_{rm eff} = 3650 - 3900$ K and $log(L_{rm bol}/L_{odot}) = 4.25pm0.10$, which yields a stellar radius $R = 310 pm 70 R_{odot}$. To fit the full spectrum, two additional components are required: a blue excess that can be fitted either by a hot blackbody (T $gtrsim 20,000$ K) or a power law (spectral index $alpha approx 4$) and is likely due to X-ray emission reprocessed in the outer accretion disk or the donor star; and a red excess that is well fitted by a blackbody with a temperature of $sim 1100$ K, and is likely due to warm dust in the vicinity of SN2010da. The presence of a red supergiant in this system implies an orbital period of at least 0.8-2.1 years, assuming Roche lobe overflow. Given the large donor-to-compact object mass ratio, orbital modulations of the radial velocity of the red supergiant are likely undetectable. However, the radial velocity amplitude of the neutron star is large enough (up to 40-60 km s$^{-1}$) to potentially be measured in the future, unless the system is viewed at a very unfavorable inclination.