Do you want to publish a course? Click here

Complex molecules in the hot core of the low mass protostar NGC1333-IRAS4A

94   0   0.0 ( 0 )
 Added by Sandrine Bottinelli
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of complex molecules (HCOOCH_3, HCOOH and CH_3CN), signposts of a hot core like region, toward the low mass, Class 0 source NGC1333-IRAS4A. This is the second low mass protostar where such complex molecules have been searched for and reported, the other source being IRAS16293-2422. It is therefore likely that compact (few tens of AUs) regions of dense and warm gas, where the chemistry is dominated by the evaporation of grain mantles, and where complex molecules are found, are common in low mass Class 0 sources.Given that the chemical formation timescale is much shorter than the gas hot core crossing time, it is not clear whether the reported complex molecules are formed on the grain surfaces (first generation molecules) or in the warm gas by reactions involving the evaporated mantle constituents (second generation molecules). We do not find evidence for large differences in the molecular abundances, normalized to the formaldehyde abundance, between the two solar type protostars, suggesting perhaps a common origin.



rate research

Read More

Although deuterium enrichment of water may provide an essential piece of information in the understanding of the formation of comets and protoplanetary systems, only a few studies up to now have aimed at deriving the HDO/H2O ratio in low-mass star forming regions. Previous studies of the molecular deuteration toward the solar-type class 0 protostar, IRAS 16293-2422, have shown that the D/H ratio of water is significantly lower than other grain-surface-formed molecules. It is not clear if this property is general or particular to this source. In order to see if the results toward IRAS 16293-2422 are particular, we aimed at studying water deuterium fractionation in a second low-mass solar-type protostar, NGC1333-IRAS2A. Using the 1-D radiative transfer code RATRAN, we analyzed five HDO transitions observed with the IRAM 30m, JCMT, and APEX telescopes. We assumed that the abundance profile of HDO in the envelope is a step function, with two different values in the inner warm (T>100 K) and outer cold (T<100 K) regions of the protostellar envelope. The inner and outer abundance of HDO is found to be well constrained at the 3 sigma level. The obtained HDO inner and outer fractional abundances are x_in=6.6e-8 - 1e-7 and x_out=9e-11 - 1.8e-9 (3 sigma). These values are close to those in IRAS 16293-2422, which suggests that HDO may be formed by the same mechanisms in these two solar-type protostars. Taking into account the (rather poorly constrained) H2O abundance profile deduced from Herschel observations, the derived HDO/H2O in the inner envelope is larger than 1% and in the outer envelope it is 0.9%-18%. These values are more than one order of magnitude higher than what is measured in comets. If the same ratios apply to the protosolar nebula, this would imply that there is some efficient reprocessing of the material between the protostellar and cometary phases. The H2O inner fractional [...]
86 - Ruud Visser 2013
Evaporation of water ice above 100 K in the inner few 100 AU of low-mass embedded protostars (the so-called hot core) should produce quiescent water vapor abundances of ~10^-4 relative to H2. Observational evidence so far points at abundances of only a few 10^-6. However, these values are based on spherical models, which are known from interferometric studies to be inaccurate on the relevant spatial scales. Are hot cores really that much drier than expected, or are the low abundances an artifact of the inaccurate physical models? We present deep velocity-resolved Herschel-HIFI spectra of the 3(12)-3(03) lines of H2-16O and H2-18O (1097 GHz, Eup/k = 249 K) in the low-mass Class 0 protostar NGC1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H2-18O 3(13)-2(20) line (203 GHz, Eup/k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C18O J=9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2x10^-5, consistent with the theoretical predictions of ~10^-4. The revised HDO/H2O abundance ratio is 1x10^-3, an order of magnitude lower than previously estimated.
Water plays a crucial role both in the interstellar medium and on Earth. To constrain its formation mechanisms and its evolution through the star formation process, the determination of the water deuterium fractionation ratios is particularly suitable. Previous studies derived HDO/H$_2$O ratios in the warm inner regions of low-mass protostars. We here report a detection of the D$_2$O 1$_{1,0}$-1$_{0,1}$ transition toward the low-mass protostar NGC1333 IRAS2A with the Plateau de Bure interferometer: this represents the first interferometric detection of D$_2$O - and only the second solar-type protostar for which this isotopologue is detected. Using the observations of the HDO 5$_{4,2}$-6$_{3,3}$ transition simultaneously detected and three other HDO lines previously observed, we show that the HDO line fluxes are well reproduced with a single excitation temperature of 218$pm$21 K and a source size of $sim$0.5 arcsec. The D$_2$O/HDO ratio is $sim$(1.2$pm$0.5) $times$ 10$^{-2}$, while the use of previous H$_2^{18}$O observations give an HDO/H$_2$O ratio of $sim$(1.7$pm$0.8) $times$ 10$^{-3}$, i.e. a factor of 7 lower than the D$_2$O/HDO ratio. These results contradict the predictions of current grain surface chemical models and indicate that either the surface deuteration processes are poorly understood or that both sublimation of grain mantles and water formation at high temperatures ($gtrsim$230 K) take place in the inner regions of this source. In the second scenario, the thermal desorption of the grain mantles would explain the high D$_2$O/HDO ratio, while water formation at high temperature would explain significant extra production of H$_2$O leading to a decrease of the HDO/H$_2$O ratio.
In molecular outflows from forming low-mass protostars, most oxygen is expected to be locked up in water. However, Herschel observations have shown that typically an order of magnitude or more of the oxygen is still unaccounted for. To test if the oxygen is instead in atomic form, SOFIA-GREAT observed the R1 position of the bright molecular outflow from NGC1333-IRAS4A. The [OI] 63 um line is detected and spectrally resolved. From an intensity peak at +15 km/s, the intensity decreases until +50 km/s. The profile is similar to that of high-velocity (HV) H2O and CO 16-15, the latter observed simultaneously with [OI]. A radiative transfer analysis suggests that ~15% of the oxygen is in atomic form toward this shock position. The CO abundance is inferred to be ~10^-4 by a similar analysis, suggesting that this is the dominant oxygen carrier in the HV component. These results demonstrate that a large portion of the observed [OI] emission is part of the outflow. Further observations are required to verify whether this is a general trend.
Context. Low-mass protostars drive powerful molecular outflows that can be observed with mm and sub-mm telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO$_2$ towards NGC1333-IRAS4A in the 1.3, 2, and 3mm bands using the IRAM NOEMA array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO$_2$ is detected rather along the outflow driven by IRAS4A2 that is extended along the north east - south west (NE-SW) direction. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO$_2$ column density ratio between the IRAS4A1 and IRAS4A2 outflows. SO is detected at extremely high radial velocity up to 25 km/s relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO$_2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا