Do you want to publish a course? Click here

The masses of the cataclysmic variables AC Cancri and V363 Aurigae

63   0   0.0 ( 0 )
 Added by Tim Thoroughgood
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variables AC Cnc and V363 Aur (= Lanning 10). There is evidence of irradiation on the inner hemisphere of the secondary star in both systems, which we correct for using a model that reproduces the observations remarkably well. We find the radial velocity of the secondary star in AC Cnc to be K_R = 176 pm 3 km/s and its rotational velocity to be v sin i = 135 pm 3 km/s. From these parameters we obtain masses of M_1 = 0.76 pm 0.03 M_sun for the white dwarf primary and M_2 = 0.77 pm 0.05 M_sun for the K2 pm 1V secondary star, giving a mass ratio of q = 1.02 pm 0.04. We measure the radial and rotational velocites of the G7 pm 2V secondary star in V363 Aur to be K_R = 168 pm 5 km/s and v sin i = 143 pm 5 km/s respectively. The component masses of V363 Aur are M_1 = 0.90 pm 0.06 M_sun and M_2 = 1.06 pm 0.11 M_sun, giving a mass ratio of q = 1.17 pm 0.07. The mass ratios for AC Cnc and V363 Aur fall within the theoretical limits for dynamically and thermally stable mass transfer. Both systems are similar to the SW Sex stars, exhibiting single-peaked emission lines with transient absorption features, high-velocity S-wave components and phase-offsets in their radial velocity curves. The Balmer lines in V363 Aur show a rapid increase in flux around phase 0 followed by a rapid decrease, which we attribute to the eclipse of an optically thick region at the centre of the disc. This model could also account for the behaviour of other SW Sex stars where the Balmer lines show only a shallow eclipse compared to the continuum.



rate research

Read More

We report photometry and spectroscopy of the novalike variable DW Cancri. The spectra show the usual broad H and He emission lines, with an excitation and continuum slope characteristic of a moderately high accretion rate. A radial-velocity search yields strong detections at two periods, 86.1015(3) min and 38.58377(6) min. We interpret these as respectively the orbital period P_orb of the binary, and the spin period P_spin of a magnetic white dwarf. The light curve also shows the spin period, plus an additional strong signal at 69.9133(10) min, which coincides with the difference frequency 1/P_spin-1/P_orb. These periods are stable over the 1 year baseline of measurement. This triply-periodic structure mimics the behavior of several well-credentialed members of the DQ Herculis (intermediate polar) class of cataclysmic variables. DQ Her membership is also suggested by the mysteriously strong sideband signal (at nu_spin-nu_orb), attesting to a strong pulsed flux at X-ray/EUV/UV wavelengths. DW Cnc is a new member of this class, and would be an excellent target for extended observation at these wavelengths.
We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by Schreiber et al. (2016), who found that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction >~ 90% of the secondary at velocities ~500-1000 km/s within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity > 1e38 erg/s, similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ~300-5000 L_sun, effective temperature T_eff ~ 3000 K and lifetime ~1e4-1e5 yr. We predict that ~1e3-1e4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.
154 - Christian Knigge 2011
I review our current understanding of the evolution of cataclysmic variables (CVs). I first provide a brief introductory CV primer, in which I describe the physical structure of CVs, as well as their astrophysical significance. The main part of the review is divided into three parts. The first part outlines the theoretical principles of CV evolution, focusing specifically on the standard disrupted magnetic braking model. The second part describes how some of the most fundamental predictions this model are at last being test observationally. Finally, the third part describes recent efforts to actually reconstruct the evolution path of CVs empirically. Some of these efforts suggest that angular momentum loss below the period gap must be enhanced relative to the purely gravitational-radiation-driven losses assumed in the standard model.
116 - Christian Knigge 2011
I review what we know about the donor stars in cataclysmic variables (CVs), focusing particularly on the close link between these binary components and the overall secular evolution of CVs. I begin with a brief overview of the standard model of CV evolution and explain why the key observables this model is designed to explain - the period gap and the period minimum -- are intimately connected to the properties of the secondary stars in these systems. CV donors are expected to be slightly inflated relative to isolated, equal-mass main-sequence (MS) stars, and this donor bloating has now been confirmed observationally. The empirical donor mass-radius relationship also shows a discontinuity at M_2 = 0.2 M_sun which neatly separates long- and short-period CVs. This is strong confirmation of the basic disrupted magnetic braking scenario for CV evolution. The empirical M_2-R_2 relation can be combined with stellar models to construct a complete, semi-empirical donor sequence for CVs. This sequence provides all physical and photometric properties of normal CV secondaries along the standard CV evolution track. The observed donor properties can also be used to reconstruct the complete evolution track followed by CVs, i.e. the mass-transfer rate and angular-momentum-loss rate as a function of orbital period. Such a reconstruction suggests that angular momentum loss rates below the period gap are too high to be driven solely by gravitational radiation.
55 - Christian Knigge 2006
We construct a complete, semi-empirical donor sequence for CVs with orbital periods less than 6 hrs. All key physical and photometric parameters of CV secondaries (along with their spectral types) are given as a function of P_orb along this sequence. The main observational basis for our donor sequence is an empirical mass-radius relation for CV secondaries. We present an optimal estimate for this relation that ensures consistency with the observed locations of the period gap and the period minimum. We also present new determinations of these periods, finding P_{gap, upper edge} = 3.18 +/- 0.04 hr, P_{gap, lower edge} = 2.15 +/- 0.03 hr and P_{min} = 76.2 +/- 1.0 min. We then test the donor sequence by comparing observed and predicted spectral types (SpTs) as a function of orbital period. To this end, we update the SpT compilation of Beuermann et al. and show explicitly that CV donors have later SpTs than main sequence (MS) stars at all orbital periods. The semi-empirical donor sequence matches the observed SpTs very well, implying that the empirical M2-R2 relation predicts just the right amount of radius expansion. We finally apply the donor sequence to the problem of distance estimation. Based on a sample of 22 CVs with trigonometric parallaxes, we show that the donor sequence correctly traces the envelope of the observed M_{JHK}-P_{orb} distribution. Thus robust lower limits on distances can be obtained from single-epoch infrared observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا