Do you want to publish a course? Click here

SPITZER Observations of the SCUBA/VLA Sources in the Lockman Hole: Star Formation History of Infrared-Luminous Galaxies

255   0   0.0 ( 0 )
 Added by Eiichi Egami
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Spitzer IRAC (3.6, 4.5, 5.8, 8.0 um) and MIPS (24 um) observations of the SCUBA submillimeter sources and uJy VLA radio sources in a 5x5 area in the Lockman Hole East region. Out of the ~40 SCUBA/VLA sources in the field, Spitzer counterparts were detected for nearly all except for the few low-weight SCUBA detections. We show that the majority (80-90%) of the detected sources are cold (i.e., starburst-like) infrared-luminous galaxies (L_{IR} > 10^{11} Lsun) at redshift 0.5<z<3.5, whose star-formation rate density (SFRD) is comparable to that of the optically-selected star-forming galaxies.



rate research

Read More

By exploiting the far-infrared(FIR) and radio correlation, we have performed the Likelihood-Ratio analysis to identify optical counterparts to the far-infrared sources in the Lockman Hole. Using the likelihood ratio analysis and the associated reliability, 44 FIR sources have been identified with radio sources. Redshifts have been obtained for 29 out of 44 identified sources. One hyper-luminous infrared galaxy (HyLIRG) with and four ultraluminous infrared galaxies (ULIRGs) are identified in our sample. The space density of the FIR sources at z = 0.3-0.6 is 4.6times 10^{-5}Mpc^{-3}, implying a rapid evolution of the ULIRG population. Most of ISO FIR sources have their FIR-radio ratios similar to star-forming galaxies ARP 220 and M82. At least seven of our FIR sources show evidence for the presence of an active galactic nucleus (AGN) in optical emission lines, radio continuum excess, or X-ray activity. Three out of five (60%) of the ULIRG/HyLIRGs are AGN galaxies. Five of the seven AGN galaxies are within the ROSAT X-ray survey field, and two are within the XMM-Newton survey fields. X-ray emission has been detected in only one source, 1EX030, which is optically classified as a quasar. The non-detection in the XMM-Newton 2-10 keV band suggests a very thick absorption obscuring the central source of the two AGN galaxies. Several sources have an extreme FIR luminosity relative to the optical R-band, L(90mumathrm{m})/L(R) > 500, which is rare even among the local ULIRG population. While source confusion or blending might offer an explanation in some cases, they may represent a new population of galaxies with an extreme activity of star formation in an undeveloped stellar system -- i.e., formation of bulges or young ellipticals.
We present new data taken at 850 $mu$m with SCUBA at the JCMT for a sample of 19 luminous infrared galaxies. Fourteen galaxies were detected. We have used these data, together with fluxes at 25, 60 and 100 $mu$m from IRAS, to model the dust emission. We find that the emission from most galaxies can be described by an optically thin, single temperature dust model with an exponent of the dust extinction coefficient ($k_lambda propto lambda^{-beta}$) of $beta simeq 1.5 - 2$. A lower $betasimeq 1$ is required to model the dust emission from two of the galaxies, Arp 220 and NGC 4418. We discuss various possibilities for this difference and conclude that the most likely is a high dust opacity. In addition, we compare the molecular gas mass derived from the dust emission, $M_{dust}$, with the molecular gas mass derived from the CO emission, $M_{CO}$, and find that $M_{CO}$ is on average a factor 3 higher than $M_{dust}$.
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environment. There is strong observational support for the hierarchical assembly of galaxies, but our insight into this assembly comes from sifting through the resolved field populations of the surviving galaxies we see today, in order to reconstruct their star formation histories, chemical evolution, and kinematics. To obtain the detailed distribution of stellar ages and metallicities over the entire life of a galaxy, one needs multi-band photometry reaching solar-luminosity main sequence stars. The Hubble Space Telescope can obtain such data in the low-density regions of Local Group galaxies. To perform these essential studies for a fair sample of the Local Universe, we will require observational capabilities that allow us to extend the study of resolved stellar populations to much larger galaxy samples that span the full range of galaxy morphologies, while also enabling the study of the more crowded regions of relatively nearby galaxies. With such capabilities in hand, we will reveal the detailed history of star formation and chemical evolution in the universe.
We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.
We present a population synthesis study of NGC4435, an early-type Virgo galaxy interacting with NGC4438. We combine new spectroscopic observations obtained with the Spitzer Space Telescope IRS instrument with IRAC archival data and broad band data from the literature. The IRS spectrum shows prominent PAH features, low ionization emission lines and H_2 rotational lines arising from the dusty circumnuclear disk characterizing this galaxy. The central SED, from X-ray to radio, is well fitted by a model of an exponential burst superimposed on an old simple stellar population. From the lack of high excitation nebular lines, the [NeIII]15.5/[NeII]12.8 ratio, the temperature of molecular hydrogen, and the fit to the full X-ray to radio SED we argue that the present activity of the galaxy is driven by star formation alone. The AGN contribution to the ionizing flux is constrained to be less than 2%. The age of the burst is found to be around 190 Myr and it is fully consistent with the notion that the star formation process has been triggered by the interaction with NGC4438. The mass involved in the rejuvenation episode turns out to be less than 1.5% of the stellar galaxy mass sampled in a 5 central aperture. This is enough to render NGC4435 closely similar to a typical interacting early-type galaxy with inverted CaII[H+K] lines that will later turn into a typical cluster E+A galaxy and enforces the notion that these objects are the result of a recent rejuvenation episode rather than a genuine delayed formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا