No Arabic abstract
We present X-ray spectroscopic and morphological analyses using Chandra ACIS and ROSAT observations of the giant elliptical galaxy NGC 4472 in the Virgo cluster. We discuss previously unobserved X-ray structures within the extended galactic corona. In the inner 2 of the galaxy, we find X-ray holes or cavities with radii of ~2 kpc, corresponding to the position of radio lobes. These holes were produced during a period of nuclear activity that began 1.2 x 10^7 years ago and may be ongoing. We also find an asymmetrical edge in the galaxy X-ray emission 3 (14 kpc) northeast of the core and an ~8 tail (36 kpc) extending southwest of the galaxy. These two features probably result from the interaction of NGC 4472 gas with the Virgo gas, which produces compression in the direction of NGC 4472s infall and an extended tail from ram pressure stripping. Assuming the tail is in pressure equilibrium with the surrounding gas, we compute its angle to our line of sight and estimate that its true extent exceeds 100 kpc. Finally, in addition to emission from the nucleus (first detected by Soldatenkov, Vikhlinin & Pavlinsky), we detect two small extended sources within 10 of the nucleus of the galaxy, both of which have luminosities of ~7 x 10^38 erg/s.
We present integrated Washington CT1 photometry of 18 bright blue objects discovered in the dwarf galaxy UGC 7636 which is located 5.5 southeast of the giant elliptical galaxy NGC 4472, the brightest galaxy in the Virgo cluster. Several lines of evidence indicate that UGC 7636 is interacting violently with NGC 4472. These objects are very blue with colors of -0.4 < (C-T1) < 0.6, and their magnitudes are in the range of 20.6 < T1 < 22.9 mag which corresponds to absolute magnitudes of -10.6 < M(T1) < -8.3 mag for a distance modulus of (m-M)o = 31.2. These objects are grouped spatially in three regions: the central region of UGC 7636, the tidal tail region, and the HI cloud region. No such objects were found in the counter tail region. It is concluded that these objects are probably young star clusters which formed < 0.1Gyr ago during the interaction between UGC 7636 and NGC 4472. Surface photometry of UGC 7636 (r < 83) shows that there is a significant excess of blue light along the tidal tail region compared with other regions. The star clusters are bluer than the stellar light in the tidal tail region, indicating that these clusters might have formed later than most stars in the tidal tail region which were formed later than most stars in the main body of the galaxy.
Important clues to the chemical and dynamical history of elliptical galaxies are encoded in the abundances of heavy elements in the X-ray emitting plasma. We derive the hot ISM abundance pattern in inner and outer regions of NGC 4472 from analysis of Suzaku spectra, supported by analysis of co-spatial XMM-Newton spectra. The low background and relatively sharp spectral resolution of the Suzaku XIS detectors, combined with the high luminosity and temperature in NGC 4472, enable us to derive a particularly extensive abundance pattern that encompasses O, Ne, Mg, Al, Si, S, Ar, Ca, Fe, and Ni in both regions. We apply simple chemical evolution models to these data, and conclude that the abundances are best explained by a combination of alpha-element enhanced stellar mass loss and direct injection of Type Ia supernova (SNIa) ejecta. We thus confirm the inference, based on optical data, that the stars in elliptical galaxies have supersolar alpha/Fe ratios, but find that that the present-day SNIa rate is 4-6 times lower than the standard value. We find SNIa yield sets that reproduce Ca and Ar, or Ni, but not all three simultaneously. The low abundance of O relative to Ne and Mg implies that standard core collapse nucleosynthesis models overproduce O by a factor of 2.
Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and HI emission. Depending on the dust emissivity, the total dust mass is 2-5x10^6 Msun. While the neutral gas-to-dust mass ratio is extremely low (< 12-30), including the ionized gas traced by [CII] emission raises this limit to < 39-100. The dust emission follows a similar r^{1/4} profile to the stellar light and the dust to stellar mass ratio is towards the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures >= 10^4 K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.
We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with $HST$ and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxys central structure and its connection to the nuclear activity. We decomposed the composite $HST$ + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The $HST$ images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit $M_{rm def}$ in the spheroid, scoured by SMBH binaries with final mass $M_{rm BH}$ such that $M_{rm def}/M_{rm BH} sim 1.3 - 3.4$. We propose a three-phase formation scenario for NGC 5322 where a few ($2-7$) dry major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly onto the AGN, powering the radio core with a brightness temperature of $T_{rm B,core} sim 4.5 times 10^{7}$ K and the low-power radio jets ($P_{rm jets}sim 7.04 times 10^{20}$ W Hz$^{-1}$) which extend $sim 1.6$ kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.
We use a 54.4 ks Chandra observation to study ram-pressure stripping in NGC4552 (M89), an elliptical galaxy in the Virgo Cluster. Chandra images in the 0.5-2 keV band show a sharp leading edge in the surface brightness 3.1 kpc north of the galaxy center, a cool (kT =0.51^{+0.09}_{-0.06} keV) tail with mean density n_e ~5.4 +/- 1.7 x 10^{-3} cm^{-3} extending ~10 kpc to the south of the galaxy, and two 3-4 kpc horns of emission extending southward away from the leading edge. These are all features characteristic of supersonic ram-pressure stripping of galaxy gas, due to NGC4552s motion through the surrounding Virgo ICM. Fitting the surface brightness profile and spectra across the leading edge, we find the galaxy gas inside the edge is cooler (kT = 0.43^{+0.03}_{-0.02} keV) and denser (n_e ~ 0.010 cm^{-3}) than the surrounding Virgo ICM (kT = 2.2^{+0.7}_{-0.4} keV and n_e = 3.0 +/- 0.3 x 10^{-4} cm^{-3}). The resulting pressure ratio between the free-streaming ICM and cluster gas at the stagnation point is ~7.6^{+3.4}_{-2.0} for galaxy gas metallicities of 0.5^{+0.5}_{-0.3} Zsolar, which suggests that NGC4552 is moving supersonically through the cluster with a velocity v ~ 1680^{+390}_{-220} km/s (Mach 2.2^{+0.5}_{-0.3}) at an angle xi ~ 35 +/- 7 degrees towards us with respect to the plane of the sky.