Do you want to publish a course? Click here

Chandra Observations of Gas Stripping in the Elliptical Galaxy NGC 4552 in the Virgo Cluster

179   0   0.0 ( 0 )
 Added by Marie E. Machacek
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a 54.4 ks Chandra observation to study ram-pressure stripping in NGC4552 (M89), an elliptical galaxy in the Virgo Cluster. Chandra images in the 0.5-2 keV band show a sharp leading edge in the surface brightness 3.1 kpc north of the galaxy center, a cool (kT =0.51^{+0.09}_{-0.06} keV) tail with mean density n_e ~5.4 +/- 1.7 x 10^{-3} cm^{-3} extending ~10 kpc to the south of the galaxy, and two 3-4 kpc horns of emission extending southward away from the leading edge. These are all features characteristic of supersonic ram-pressure stripping of galaxy gas, due to NGC4552s motion through the surrounding Virgo ICM. Fitting the surface brightness profile and spectra across the leading edge, we find the galaxy gas inside the edge is cooler (kT = 0.43^{+0.03}_{-0.02} keV) and denser (n_e ~ 0.010 cm^{-3}) than the surrounding Virgo ICM (kT = 2.2^{+0.7}_{-0.4} keV and n_e = 3.0 +/- 0.3 x 10^{-4} cm^{-3}). The resulting pressure ratio between the free-streaming ICM and cluster gas at the stagnation point is ~7.6^{+3.4}_{-2.0} for galaxy gas metallicities of 0.5^{+0.5}_{-0.3} Zsolar, which suggests that NGC4552 is moving supersonically through the cluster with a velocity v ~ 1680^{+390}_{-220} km/s (Mach 2.2^{+0.5}_{-0.3}) at an angle xi ~ 35 +/- 7 degrees towards us with respect to the plane of the sky.



rate research

Read More

90 - D. M. Lucero , L. M. Young , 2004
We present a deep VLA search for HI emission from the low-luminosity Virgo Cluster elliptical galaxy NGC 4476, which contains 1.1 x 10^8 M_sun of molecular gas in an undisturbed disk in regular rotation. No HI was detected. The rms noise in the final image corresponds to a 3 sigma column density sensitivity of 1.2 x 10^20 cm^{-2} at the position of NGC 4476, averaged over the 4 kpc beam. The total HI mass is less than 1.5 x 10^7 M_sun. If we compare our HI upper limit to the H_2 content, we find that NGC 4476 is extremely deficient in HI compared to other galaxies detected in these two species. The H_2/HI mass ratio for NGC 4476 is > 7, whereas typical H_2/HI ratios for elliptical galaxies detected in both HI and H_2 are <~2. Based on this extreme HI deficiency and the intra-cluster medium (ICM) density at the projected distance from M87 we argue that either NGC 4476 has undergone ram-pressure stripping while traveling through the Virgo cluster core or its average molecular gas density is larger and its interstellar UV field is smaller than in typical spiral galaxies. NGC 4476 is located 12 in projection from M87, which causes extreme continuum confusion problems. We also discuss in detail the techniques used for continuum subtraction. The spectral dynamic range of our final image is 50,000 to 1.
134 - B. Vollmer 2008
VIVA HI observations of the Virgo spiral galaxy NGC 4501 are presented. The HI disk is sharply truncated to the southwest, well within the stellar disk. A region of low surface-density gas, which is more extended than the main HI disk, is discovered northeast of the galaxy center. These data are compared to existing 6cm polarized radio continuum emission, Halpha, and optical broad band images. We observe a coincidence between the western HI and polarized emission edges, on the one hand, and a faint Halpha emission ridge, on the other. The polarized emission maxima are located within the gaps between the spiral arms and the faint Halpha ridge. Based on the comparison of these observations with a sample of dynamical simulations with different values for maximum ram pressure and different inclination angles between the disk and the orbital plane,we conclude that ram pressure stripping can account for the main observed characteristics. NGC 4501 is stripped nearly edge-on, is heading southwest, and is ~200-300 Myr before peak ram pressure, i.e. its closest approach to M87. The southwestern ridge of enhanced gas surface density and enhanced polarized radio-continuum emission is due to ram pressure compression. It is argued that the faint western Halpha emission ridge is induced by nearly edge-on ram pressure stripping. NGC 4501 represents an especially clear example of early stage ram pressure stripping of a large cluster-spiral galaxy.
183 - B. Vollmer 2009
Ram pressure stripping of the multiphase ISM is studied in the perturbed Virgo cluster spiral galaxy NGC 4438. This galaxy underwent a tidal interaction ~100 Myr ago and is now strongly affected by ram pressure stripping. Deep VLA radio continuum observations at 6 and 20 cm are presented. We detect prominent extraplanar emission to the west of the galactic center, which extends twice as far as the other tracers of extraplanar material. The spectral index of the extraplanar emission does not steepen with increasing distance from the galaxy. This implies in situ re-acceleration of relativistic electrons. The comparison with multiwavelength observations shows that the magnetic field and the warm ionized interstellar medium traced by Halpha emission are closely linked. The kinematics of the northern extraplanar Halpha emission, which is ascribed to star formation, follow those of the extraplanar CO emission. In the western and southern extraplanar regions, the Halpha measured velocities are greater than those of the CO lines. We suggest that the ionized gas of this region is excited by ram pressure. The spatial and velocity offsets are consistent with a scenario where the diffuse ionized gas is more efficiently pushed by ram pressure stripping than the neutral gas. We suggest that the recently found radio-deficient regions compared to 24 mum emission are due to this difference in stripping efficiency.
81 - B. Vollmer 2020
NGC 4330 is one of the Virgo galaxies whose UV distribution shows a tail structure. An associated tail structure is also observed in the HI and H$alpha$ emission distributions. Previous dynamical modeling showed that the galaxy is approaching the cluster center and is therefore undergoing increasing ram pressure stripping. Recent stellar population fitting of deep optical spectra together with multiband photometry lead to the determination of the time when star formation was quenched in the galactic disk. We introduce a new version of the dynamical model that includes the diffuse ionized gas and aim to reproduce the HI, H$alpha$, UV distributions together with the star formation histories of the outer gas-free parts of the galactic disk. The results of 50 simulations with five different Lorentzian temporal ram-pressure profiles and five different delays between the simulation onset and peak ram pressure are presented. The inclusion of diffuse gas stripping changes significantly the HI, UV, and H$alpha$ emission distributions. The simulations with diffuse gas stripping naturally lead to vertical low surface density filaments in the downwind region of the galactic disk. These filaments occur less frequently in the simulations without diffuse gas stripping. The simulations with diffuse gas stripping lead to better joint fits to the SEDs and optical spectra. The HI, NUV, and H$alpha$ morphologies of the model snapshots which best reproduce the SEDs and optical spectra are sufficiently different to permit a selection of best-fit models. We conclude that the inclusion of diffuse gas stripping significantly improves the resemblance between the model and observations. Our preferred model yields a time to peak ram pressure of 140 Myr in the future. The spatial coincidence of the radio continuum and diffuse H$alpha$ tails suggests that both gas phases are stripped together.
We present GALEX NUV (2310 A) and FUV (1530 A) images of the interacting galaxy NGC 4438 (Arp 120) in the center of the Virgo cluster. These images show an extended (20 kpc) tidal tail at the north-west edge of the galaxy previously undetected at other wavelengths, at 15-25 kpc from its nucleus. Except in the nucleus, the UV morphology of NGC 4438 is totally different from the Halpha+[NII] one, more similar to the X-ray emission, confirming its gas cooling origin. We study the star formation history of NGC 4438 combining spectro-photometric data in the UV-visible-near-IR wavelength range with population synthesis and galaxy evolution models. The data are consistent with a recent (~ 10 Myr), instantaneous burst of star formation in the newly discovered UV north-western tail which is significantly younger than the age of the tidal interaction with NGC 4435, dated by dynamical models at ~ 100 Myr ago. Recent star formation events are also present at the edge of the northern arm and in the southern tail, while totally lacking in the other regions, which are dominated by the old stellar population perturbed during the dynamical interaction with NGC 4435. The contribution of this recent starburst to the total galaxy stellar mass is lower than 0.1%, an extremely low value for such a violent interaction. High-velocity, off-center tidal encounters such as that observed in Arp 120 are thus not sufficient to significantly increase the star formation activity of cluster galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا