Do you want to publish a course? Click here

The Properties and the Evolution of the Highly Ionized Gas in MR2251-178

44   0   0.0 ( 0 )
 Added by Shai Kaspi
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) We present the first XMM-Newton observations of the radio-quiet quasar MR2251-178 obtained in 2000 and 2002. The EPIC-pn spectra show a power-law continuum with a slope of 1.6 at high energies absorbed by at least two warm absorbers (WAs) intrinsic to the source. The underlying continuum in the earlier observation shows a soft excess at low X-ray energies which can be modeled as an additional power-law with a slope of 2.9. The high-resolution grating spectrum obtained in 2002 shows emission lines from N VI, O VII, O VIII, Ne IX, and Ne X, as well as absorption lines from the low-ionization ions of O III, O IV, and O V, and other confirmed and suspected weaker absorption lines. We suggest a model for the high-resolution spectrum which consist of two or three WA components. The two-components model has a high-ionization WA with a column density of 10^21.5 - 10^21.8 cm^-2 and a low-ionization absorber with a column density of 10^20.3 cm^-2. In the three-components model we add a lower ionization component that produce the observed iron M-shell absorption lines. We investigate the spectral variations in MR2251-178 over a period of 8.5 years using data from ASCA, BeppoSAX, and XMM-Newton. All X-ray observations can be fitted with the above EPIC-pn model. The 8.5 year history of the source suggests a changing X-ray absorber due to material that enters and disappears from the line-of-sight on timescales of several months. We also present the entire FUSE spectrum of MR2251-178. We detect emission from N III, C III, and O VI and at least 4 absorption systems in C III, H I, and O VI, one at -580 km/s and at least 3 others which are blended together and form a wide trough covering the velocity range of 0 to -500 km/s. The general characteristics of the UV and X-ray absorbers are consistent with an origin in the same gas.



rate research

Read More

201 - P. Arevalo 2008
Emission from Active Galactic Nuclei is known to vary strongly over time over a wide energy band, but the origin of the variability and especially of the inter-band correlations is still not well established. Here we present the results of our X-ray and optical monitoring campaign of the quasar MR2251-178, covering a period of 2.5 years. The X-ray 2-10 keV flux is remarkably well correlated with the optical B, V and R bands, their fluctuations are almost simultaneous with a delay consistent with 0 days and not larger than 4 days in either direction. The amplitude of variations shows an intriguing behaviour: rapid, large amplitude fluctuations over tens of days in the X-rays have only small counterparts in the optical bands, while the long-term trends over hundreds of days are stronger in the B band than in X-rays. We show that simple reprocessing models, where all the optical variability arises from the variable X-ray heating, cannot simultaneously explain the discrepant variability amplitudes on different time-scales and the short delays between X-ray and optical bands. We interpret the variability and correlations, in the optically-thick accretion disc plus corona scenario, as the result of intrinsic accretion rate variations modulating both X-ray and optical emission, together with reprocessing of X-rays by the accretion disc.
324 - J.M. Ramirez 2008
We present an analysis of our Chandra Low Energy Transmission Grating Spectrometer (LETGS) observation of the quasar MR2251-178. The warm absorber of MR2251-178 is well described by a hydrogen column density, N_H~2x10^21 cm^-2, and an ionization parameter log(xi)~0.6. We find in the spectrum weak evidence for narrow absorption lines from Carbon and Nitrogen which indicate that the ionized material is in outflow. We note changes (in time) of the absorption structure in the band (0.6-1) keV (around the UTAs plus the OVII and OVIII K-edges) at different periods of the observation. We measure a (0.1-2) keV flux of 2.58x10^-11 ergs cm^-2 s^-1. This flux implies that the nuclear source of MR2251-178 is in a relatively low state. No significant variability is seen in the light curve. We do not find evidence for an extra cold material in the line of sight, and set an upper limit of N_H~1.2x10^20 cm^-2. The X-ray spectrum does not appear to show evidence for dusty material, though an upper limit in the neutral carbon and oxygen column densities can only be set to N_CI~2x10^19 cm^-2 and N_OI~9x10^19 cm^-2, respectively.
We report the results of an extensive FUSE study of high velocity OVI absorption along 102 complete sight lines through the Galactic halo. The high velocity OVI traces a variety of phenomena, including tidal interactions with the Magellanic Clouds, accretion of gas, outflow from the Galactic disk, warm/hot gas interactions in a highly extended Galactic corona, and intergalactic gas in the Local Group. We identify 85 high velocity OVI features at velocities of -500 < v(LSR) < +500 km/s along 59 of the 102 sight lines. Approximately 60% of the sky (and perhaps as much as 85%) is covered by high velocity H+ associated with the high velocity OVI. Some of the OVI is associated with known high velocity HI structures (e.g., the Magellanic Stream, Complexes A and C), while some OVI features have no counterpart in HI 21cm emission. The smaller dispersion in the OVI velocities in the GSR and LGSR reference frames compared to the LSR is necessary (but not conclusive) evidence that some of the clouds are extragalactic. Most of the OVI cannot be produced by photoionization, even if the gas is irradiated by extragalactic background radiation. Collisions in hot gas are the primary OVI ionization mechanism. We favor production of some of the OVI at the boundaries between warm clouds and a highly extended [R > 70 kpc], hot [T > 10^6 K], low-density [n < 10^-4 cm^-3] Galactic corona or Local Group medium. A hot Galactic corona or Local Group medium and the prevalence of high velocity OVI are consistent with predictions of galaxy formation scenarios. Distinguishing between the various phenomena producing high velocity OVI will require continuing studies of the distances, kinematics, elemental abundances, and physical states of the different types of high velocity OVI features found in this study. (abbreviated)
We present a simple model that explains the origin of warm diffuse gas seen primarily as highly ionized absorption line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as OVI, OVIII, NeVIII, NV, and MgX; and present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo,starburst galaxies, the circumgalactic medium and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most of such absorption line systems are consistent with being collisionally ionized, and estimate the maximum likelihood temperature of the gas in each observation. This model satisfactorily explains why OVI is regularly observed around star-forming low-z L* galaxies, and why NV is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intra-group, and intergalactic media, as well as the available data on other absorption-line from highly ionized species.
112 - N. Lehner , W.F. Zech , J.C. Howk 2010
The cooling transition temperature gas in the interstellar medium (ISM), traced by the high ions, Si IV, C IV, N V, and O VI, helps to constrain the flow of energy from the hot ISM with T >10^6 K to the warm ISM with T< 2x10^4 K. We investigate the properties of this gas along the lines of sight to 38 stars in the Milky Way disk using 1.5-2.7 km/s resolution spectra of Si IV, C IV, and N V absorption from the Space Telescope Imaging Spectrograph (STIS), and 15 km/s resolution spectra of O VI absorption from the Far Ultraviolet Spectroscopic Explorer (FUSE). The absorption by Si IV and C IV exhibits broad and narrow components while only broad components are seen in N V and O VI. The narrow components imply gas with T<7x10^4 K and trace two distinct types of gas. The strong, saturated, and narrow Si IV and C IV components trace the gas associated with the vicinities of O-type stars and their supershells. The weaker narrow Si IV and C IV components trace gas in the general ISM that is photoionized by the EUV radiation from cooling hot gas or has radiatively cooled in a non-equilibrium manner from the transition temperature phase, but rarely the warm ionized medium (WIM) probed by Al III. The broad Si IV, C IV, N V, and O VI components trace collisionally ionized gas that is very likely undergoing a cooling transition from the hot ISM to the warm ISM. The cooling process possibly provides the regulation mechanism that produces N(C IV)/N(Si IV) = 3.9 +/- 1.9. The cooling process also produces absorption lines where the median and mean values of the line widths increase with the energy required to create the ion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا