Do you want to publish a course? Click here

Chandra LETGS spectroscopy of the Quasar MR2251-178 and its warm absorber

324   0   0.0 ( 0 )
 Added by Jose Ramirez Dr.
 Publication date 2008
  fields Physics
and research's language is English
 Authors J.M. Ramirez




Ask ChatGPT about the research

We present an analysis of our Chandra Low Energy Transmission Grating Spectrometer (LETGS) observation of the quasar MR2251-178. The warm absorber of MR2251-178 is well described by a hydrogen column density, N_H~2x10^21 cm^-2, and an ionization parameter log(xi)~0.6. We find in the spectrum weak evidence for narrow absorption lines from Carbon and Nitrogen which indicate that the ionized material is in outflow. We note changes (in time) of the absorption structure in the band (0.6-1) keV (around the UTAs plus the OVII and OVIII K-edges) at different periods of the observation. We measure a (0.1-2) keV flux of 2.58x10^-11 ergs cm^-2 s^-1. This flux implies that the nuclear source of MR2251-178 is in a relatively low state. No significant variability is seen in the light curve. We do not find evidence for an extra cold material in the line of sight, and set an upper limit of N_H~1.2x10^20 cm^-2. The X-ray spectrum does not appear to show evidence for dusty material, though an upper limit in the neutral carbon and oxygen column densities can only be set to N_CI~2x10^19 cm^-2 and N_OI~9x10^19 cm^-2, respectively.



rate research

Read More

201 - P. Arevalo 2008
Emission from Active Galactic Nuclei is known to vary strongly over time over a wide energy band, but the origin of the variability and especially of the inter-band correlations is still not well established. Here we present the results of our X-ray and optical monitoring campaign of the quasar MR2251-178, covering a period of 2.5 years. The X-ray 2-10 keV flux is remarkably well correlated with the optical B, V and R bands, their fluctuations are almost simultaneous with a delay consistent with 0 days and not larger than 4 days in either direction. The amplitude of variations shows an intriguing behaviour: rapid, large amplitude fluctuations over tens of days in the X-rays have only small counterparts in the optical bands, while the long-term trends over hundreds of days are stronger in the B band than in X-rays. We show that simple reprocessing models, where all the optical variability arises from the variable X-ray heating, cannot simultaneously explain the discrepant variability amplitudes on different time-scales and the short delays between X-ray and optical bands. We interpret the variability and correlations, in the optically-thick accretion disc plus corona scenario, as the result of intrinsic accretion rate variations modulating both X-ray and optical emission, together with reprocessing of X-rays by the accretion disc.
We present here the results of a 180 ks Chandra-LETGS observation as part of a large multi-wavelength campaign on Mrk 509. We study the warm absorber in Mrk 509 and use the data from a simultaneous HST-COS observation in order to assess whether the gas responsible for the UV and X-ray absorption are the same. We analyzed the LETGS X-ray spectrum of Mrk 509 using the SPEX fitting package. We detect several absorption features originating in the ionized absorber of the source, along with resolved emission lines and radiative recombination continua. The absorption features belong to ions with, at least, three distinct ionization degrees. The lowest ionized component is slightly redshifted (v = +73 km/s) and is not in pressure equilibrium with the others, and therefore it is not likely part of the outflow, possibly belonging to the interstellar medium of the host galaxy. The other components are outflowing at velocities of -196 and -455 km/s, respectively. The source was observed simultaneously with HST-COS, finding 13 UV kinematic components. At least three of them can be kinematically associated with the observed X-ray components. Based on the HST-COS results and a previous FUSE observation, we find evidence that the UV absorbing gas might be co-located with the X-ray absorbing gas and belong to the same structure.
(abridged) We present the first XMM-Newton observations of the radio-quiet quasar MR2251-178 obtained in 2000 and 2002. The EPIC-pn spectra show a power-law continuum with a slope of 1.6 at high energies absorbed by at least two warm absorbers (WAs) intrinsic to the source. The underlying continuum in the earlier observation shows a soft excess at low X-ray energies which can be modeled as an additional power-law with a slope of 2.9. The high-resolution grating spectrum obtained in 2002 shows emission lines from N VI, O VII, O VIII, Ne IX, and Ne X, as well as absorption lines from the low-ionization ions of O III, O IV, and O V, and other confirmed and suspected weaker absorption lines. We suggest a model for the high-resolution spectrum which consist of two or three WA components. The two-components model has a high-ionization WA with a column density of 10^21.5 - 10^21.8 cm^-2 and a low-ionization absorber with a column density of 10^20.3 cm^-2. In the three-components model we add a lower ionization component that produce the observed iron M-shell absorption lines. We investigate the spectral variations in MR2251-178 over a period of 8.5 years using data from ASCA, BeppoSAX, and XMM-Newton. All X-ray observations can be fitted with the above EPIC-pn model. The 8.5 year history of the source suggests a changing X-ray absorber due to material that enters and disappears from the line-of-sight on timescales of several months. We also present the entire FUSE spectrum of MR2251-178. We detect emission from N III, C III, and O VI and at least 4 absorption systems in C III, H I, and O VI, one at -580 km/s and at least 3 others which are blended together and form a wide trough covering the velocity range of 0 to -500 km/s. The general characteristics of the UV and X-ray absorbers are consistent with an origin in the same gas.
Outflows of photoionized gas are commonly detected in the X-ray spectra of Seyfert 1 galaxies. However, the evidence for this phenomenon in broad line radio galaxies, which are analogous to Seyfert 1 galaxies in the radio-loud regime, has so far been scarce. Here, we present the analysis of the X-ray absorption in the radio-loud quasar 4C +74.26. With the aim of characterizing the kinetic and the ionization conditions of the absorbing material, we fitted jointly the XMM-Newton Reflection Grating Spectrometer (RGS) and the Chandra High Energy Transmission Grating Spectrometer (HETGS) spectra, which were taken 4 months apart. The intrinsic continuum flux did not vary significantly during this time lapse. The spectrum shows the absorption signatures (e.g., Fe-UTA, ion{O}{vii}, and ion{Ne}{vii}--ion{Ne}{x}) of a photoionized gas outflow ($N_{rm H} sim 3.5 times 10^{21} rm cm^{-2}$, $log xi sim 2.6$, $v_{rm out}sim 3600 , rm km , s^{-1}$) located at the redshift of source. We estimate that the gas is located outside the broad line region but within the boundaries of the putative torus. This ionized absorber is consistent with the X-ray counterpart of a polar scattering outflow reported in the optical band for this source. The kinetic luminosity carried by the outflow is insufficient to produce a significant feedback is this quasar. Finally, we show that the heavy soft X-ray absorption that was noticed in the past for this source arises mostly in the Galactic ISM.
We present high-resolution soft-X-ray spectra of the prototypical Seyfert 2 galaxy, NGC 1068, taken with XMM-Newton RGS and Chandra LETGS. Its rich emission-line spectrum is dominated by recombination in a warm plasma (bright, narrow radiative recombination continua provide the ``smoking gun), which is photoionized by the inferred nuclear power-law continuum. Radiative decay following photoexcitation of resonant transitions is also significant. A self-consistent model of an irradiated cone of gas is capable of reproducing the hydrogenic/heliumlike ionic line series in detail. The radial ionic column densities we infer are consistent with absorption measurements (the warm absorber) in Seyfert 1 galaxies. This strongly suggests that the emission spectrum we observe from NGC 1068 emanates from its warm absorber. The observed extent of the ionization-cone/warm absorber in NGC 1068 of about 300 pc implies that a large fraction of the gas associated with generic warm absorbers may typically exist on the hundreds-of-parsec scale rather than much closer to the nucleus (e.g., less than a parsec). Spatially-resolved spectroscopy using the LETGS of two distinct emission regions yields two noticeably different spectra. We show that these differences are solely due to differing radial column densities. A fairly flat distribution in ionization parameter is necessary to explain the inferred radial ionic column densities of all spectra. This must primarily be due to a broad density distribution at each radius, spanning roughly 0.1-100 cm$^{-3}$. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا