Do you want to publish a course? Click here

The structure of the ICM from High Resolution SPH simulations

56   0   0.0 ( 0 )
 Added by Ra\\'ul Sevilla
 Publication date 2004
  fields Physics
and research's language is English
 Authors G. Yepes




Ask ChatGPT about the research

We present results from a set of high (512^3 effective resolution), and ultra-high (1024^3) SPH adiabatic cosmological simulations of cluster formation aimed at studying the internal structure of the intracluster medium (ICM). We derive a self-consistent analytical model of the structure of the intracluster medium (ICM). We discuss the radial structure and scaling relations expected from purely gravitational collapse, and show that the choice of a particular halo model can have important consequences on the interpretation of observational data. The validity of the approximations of hydrostatic equilibrium and a polytropic equation of state are checked against results of our simulations. The properties of the ICM are fully specified when a universal profile is assumed for either the dark or the baryonic component. We also show the first results from an unprecedented large-scale simulation of 500 Mpc/h and 2 times 512^3 gas and dark matter particles. This experiment will make possible a detailed study of the large-scale distribution of clusters as a function of their X-ray properties.

rate research

Read More

We present some of the results of an ongoing collaboration to sudy the dynamical properties of galaxy clusters by means of high resolution adiabatic SPH cosmological simulations. Results from our numerical clusters have been tested against analytical models often used in X-ray observations: $beta$ model (isothermal and polytropic) and those based on universal dark matter profiles. We find a universal temperature profile, in agreement with AMR gasdynamical simulations of galaxy clusters. Temperature decreases by a factor 2-3 from the center to virial radius. Therefore, isothermal models (e.g. $beta$ model) give a very poor fit to simulated data. Moreover, gas entropy profiles deviate from a power law near the center, which is also in very good agreement with independent AMR simulations. Thus, if future X-ray observations confirm that gas in clusters has an extended isothermal core, then non-adiabatic physics would be required in order to explain it.
We perform N-Body/SPH simulations of disk galaxy formation inside equilibrium spherical and triaxial cuspy dark matter halos. We systematically study the disk properties and morphology as we increase the numbers of dark matter and gas particles from 10^4 to 10^6 and change the force resolution. The force resolution influences the morphological evolution of the disk quite dramatically. Unless the baryon fraction is significantly lower than the universal value, with high force resolution a gaseous bar always forms within a billion years after allowing cooling to begin. The bar interacts with the disk, transferring angular momentum and increasing its scale length. In none of the simulations does the final mass distribution of the baryons obey a single exponential profile. Indeed within a few hundred parsecs to a kiloparsec from the center the density rises much more steeply than in the rest of the disk, and this is true irrespective of the presence of the bar.
54 - S. Borgani 2001
We present results from high-resolution Tree+SPH simulations of galaxy clusters and groups, aimed at studying the effect of non-gravitational heating on the entropy of the ICM. We simulate three systems, having emission-weighted temperature T=0.6,1 and 3 keV, with spatial resolution better than 1% of the virial radius. We consider the effect of different prescriptions for non-gravitational ICM heating, such as SN energy feedback, as predicted by semi-analytical models of galaxy formation, and two different minimum entropy floors, S_fl=50 and 100 keV cm^2, imposed at z=3. Simulations with only gravitational heating nicely reproduce predictions from self-similar ICM models, while extra heating is shown to break the self-similarity, by a degree which depends on total injected energy and on cluster mass. We use observational results on the excess entropy in central regions of galaxy systems, to constrain the amount of extra-heating required. We find that setting the entropy floor S_fl=50 keV cm^2, which corresponds to an extra heating energy of about 1 keV per particle, is able to reproduce the observed excess of ICM entropy.
The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.
We investigate, by means of numerical simulations, the phenomenology of star formation triggered by low-velocity collisions between low-mass molecular clumps. The simulations are performed using an SPH code which satisfies the Jeans condition by invoking On-the-Fly Particle Splitting. Clumps are modelled as stable truncated (non-singular) isothermal, i.e. Bonnor-Ebert, spheres. Collisions are characterised by M_0 (clump mass), b (offset parameter, i.e. ratio of impact parameter to clump radius), and M (Mach Number, i.e. ratio of collision velocity to effective post-shock sound speed). The gas subscribes to a barotropic equation of state, which is intended to capture (i) the scaling of pre-collision internal velocity dispersion with clump mass, (ii) post-shock radiative cooling, and (iii) adiabatic heating in optically thick protostellar fragments. The efficiency of star formation is found to vary between 10% and 30% in the different collisions studied and it appears to increase with decreasing M_0, and/or decreasing b, and/or increasing M. For b<0.5 collisions produce shock compressed layers which fragment into filaments. Protostellar objects then condense out of the filaments and accrete from them. The resulting accretion rates are high, 1 to 5 x 10^{-5} M_sun yr^{-1}, for the first 1 to 3 x 10^4 yrs. The densities in the filaments, n >~ 5 x 10^5 cm^{-3}, are sufficient that they could be mapped in NH_3 or CS line radiation, in nearby star formation regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا