Do you want to publish a course? Click here

Pre-heating the ICM in high resolution simulations: the effect on the gas entropy

55   0   0.0 ( 0 )
 Added by Stefano Borgani
 Publication date 2001
  fields Physics
and research's language is English
 Authors S. Borgani




Ask ChatGPT about the research

We present results from high-resolution Tree+SPH simulations of galaxy clusters and groups, aimed at studying the effect of non-gravitational heating on the entropy of the ICM. We simulate three systems, having emission-weighted temperature T=0.6,1 and 3 keV, with spatial resolution better than 1% of the virial radius. We consider the effect of different prescriptions for non-gravitational ICM heating, such as SN energy feedback, as predicted by semi-analytical models of galaxy formation, and two different minimum entropy floors, S_fl=50 and 100 keV cm^2, imposed at z=3. Simulations with only gravitational heating nicely reproduce predictions from self-similar ICM models, while extra heating is shown to break the self-similarity, by a degree which depends on total injected energy and on cluster mass. We use observational results on the excess entropy in central regions of galaxy systems, to constrain the amount of extra-heating required. We find that setting the entropy floor S_fl=50 keV cm^2, which corresponds to an extra heating energy of about 1 keV per particle, is able to reproduce the observed excess of ICM entropy.

rate research

Read More

55 - G. Yepes 2004
We present results from a set of high (512^3 effective resolution), and ultra-high (1024^3) SPH adiabatic cosmological simulations of cluster formation aimed at studying the internal structure of the intracluster medium (ICM). We derive a self-consistent analytical model of the structure of the intracluster medium (ICM). We discuss the radial structure and scaling relations expected from purely gravitational collapse, and show that the choice of a particular halo model can have important consequences on the interpretation of observational data. The validity of the approximations of hydrostatic equilibrium and a polytropic equation of state are checked against results of our simulations. The properties of the ICM are fully specified when a universal profile is assumed for either the dark or the baryonic component. We also show the first results from an unprecedented large-scale simulation of 500 Mpc/h and 2 times 512^3 gas and dark matter particles. This experiment will make possible a detailed study of the large-scale distribution of clusters as a function of their X-ray properties.
We present a model for the compression and heating of the ICM by powerful radio galaxies and quasars. Based on a self-similar model of the dynamical evolution of FRII-type objects we numerically integrate the hydrodynamic equations governing the flow of the shocked ICM in between the bow shock and the radio lobes of these sources. The resulting gas properties are presented and discussed. The X-ray emission of the shocked gas is calculated and is found to be in agreement with observations. The enhancement of the X-ray emission of cluster gas due to the presence of powerful radio galaxies may play an important role in the direct detection of cluster gas at high redshifts.
We examine the impact of dark matter particle resolution on the formation of a baryonic core in high resolution adaptive mesh refinement simulations. We test the effect that both particle smoothing and particle splitting have on the hydrodynamic properties of a collapsing halo at high redshift (z > 20). Furthermore, we vary the background field intensity, with energy below the Lyman limit (< 13.6 eV), as may be relevant for the case of metal-free star formation and super-massive black hole seed formation. We find that using particle splitting methods greatly increases our particle resolution without introducing any numerical noise and allows us to achieve converged results over a wide range of external background fields. Additionally, we find that for lower values of the background field a lower dark matter particle mass is required. We define the radius of the core as the point at which the enclosed baryonic mass dominates over the enclosed dark matter mass. For our simulations this results in $rm{R_{core} sim 5 pc}$. We find that in order to produce converged results which are not affected by dark matter particles requires that the relationship ${M_{rm{core}} / M_{rm{DM}}} > 100.0$ be satisfied, where ${M_{rm{core}}}$ is the enclosed baryon mass within the core and $M_{rm{DM}}$ is the minimum dark matter particle mass. This ratio should provide a very useful starting point for conducting convergence tests before any production run simulations. We find that dark matter particle smoothing is a useful adjunct to already highly resolved simulations.
One of the most promising solutions for the cooling flow problem involves energy injection from the central AGN. However it is still not clear how collimated jets can heat the ICM at large scale, and very little is known concerning the effect of radio lobe expansion as they enter into pressure equilibrium with the surrounding cluster gas. Cygnus A is one of the best examples of a nearby powerful radio galaxy for which the synchrotron emitting plasma and thermal emitting intra-cluster medium can be mapped in fine detail, and previous observations have inferred possible shock structure at the location of the cocoon. We use new XMM-Newton observations of Cygnus A, in combination with deep Chandra observations, to measure the temperature of the intra-cluster medium around the expanding radio cavities. We investigate how inflation of the cavities may relate to shock heating of the intra-cluster gas, and whether such a mechanism is sufficient to provide enough energy to offset cooling to the extent observed.
The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا