No Arabic abstract
We examine the spectrum of diffuse emission detected in the 17 by 17 field around Sgr A* during 625 ks of Chandra observations. The spectrum exhibits He-like and H-like lines from Si, S, Ar, Ca, and Fe, that are consistent with originating in a two-temperature plasma, as well as a prominent low-ionization Fe line. The cooler, kT=0.8 keV plasma differs in surface brightness across the image by a factor of 9. This soft plasma is probably heated by supernovae. The radiative cooling rate of the plasma within the inner 20 pc of the Galaxy could be balanced by 1% of the kinetic energy of one supernova every 300,000 y. The hotter, kT=8 keV component is more spatially uniform, ranging over a factor of 2 in surface brightness. The intensity of the hard plasma is correlated with that of the soft, but they are probably only indirectly related, because supernova remnants are not observed to produce thermal plasma hotter than kT=3 keV. Moreover, a kT=8 keV plasma is too hot to be bound to the Galactic center, and therefore would form a slow wind or fountain of plasma. The energy required to sustain such a freely-expanding plasma within the inner 20 pc of the Galaxy is ~10^40 erg/s, which corresponds to the entire kinetic energy of one supernova every 3000 y. This rate is unreasonably high. However, alternative explanations for the kT=8 keV diffuse emission are equally unsatisfying. We are left to conclude that either the diffuse emission is heated by an unanticipated source of energy, or that a population of faint (< 10^31 erg/s), hard X-ray sources that are a factor of 10 more numerous than CVs remains to be discovered. (Abridged)
We report the discovery of eight X-ray sources with periodic variability in 487 ks of observations of the Galactic center with Chandra. The sources are identified from a sample of 285 objects detected with 100-4200 net counts. Their periods range from 300 s to 4.5 h with amplitudes between 40% and 70% rms. They have luminosities of (1 - 5) times 10^{32} erg/sec (2--8 keV at 8 kpc). The spectra of seven of the eight sources are consistent with Gamma = 0 power laws absorbed by gas and dust with a column density equal to or higher than that toward the Galactic Center (6 times 10^{22} cm^{-2}). Four of these sources also exhibit emission lines near 6.7 keV from He-like Fe, with equivalent widths of 600-1000 eV. These properties are consistent with both magnetically accreting cataclysmic variables and wind-accreting neutron stars in high-mass X-ray binaries. The eighth source has an absorbing column of 5 times 10^{21} cm^{-2} that places it in the foreground. Its spectrum is consistent with either a Gamma = 1.4 power law or kT = 25 keV bremsstrahlung emission. Its period-folded flux profile clearly identifies it as an eclipsing polar. We place an approximate upper limit of i^prime > 23 magnitude on the optical counterpart to this source using a 5 min exposure obtained with the MagIC camera on the Clay telescope (Magellan II) at Las Campanas.
(abridged) We present a catalog of 2357 point sources detected during 590 ks of Chandra observations of the 17-by-17 arcminute field around Sgr A*. This field encompasses a physical area of 40 by 40 pc at a distance of 8 kpc. The completeness limit of the sample at the Galactic center is 10^{31} erg s^{-1} (2.0--8.0 keV), while the detection limit is an order of magnitude lower. The 281 sources detected below 1.5 keV are mainly in the foreground of the Galactic center, while comparisons to the Chandra deep fields at high Galactic latitudes suggest that only about 100 of the observed sources are background AGN. The surface density of absorbed sources (not detected below 1.5 keV) falls off as 1/theta away from Sgr A*, in agreement with the distribution of stars in infrared surveys. Point sources brighter than our completeness limit produce 10% of the flux previously attributed to diffuse emission. The log(N)-log(S) distribution of the Galactic center sources is extremely steep (power-law slope alpha = 1.7). If this distribution extends down to a flux of 10^{-17} erg cm^{-1} s^{-1} (10^{29} erg s^{-1} at 8 kpc, 2.0--8.0 keV) with the same slope, then point sources would account for all of the previously reported diffuse emission. Therefore, the 2.0--8.0 keV luminosity distribution must flatten between 10^{29} - 10^{31} erg s^{-1}. Finally, the spectra of more than half of the Galactic center sources are very hard, and can be described by a power law ($E^{-Gamma}) with photon index Gamma < 1. Such hard spectra have been seen previously only from magnetically accreting white dwarfs and wind-accreting neutron stars, suggesting that there are large numbers of these systems in our field.
We study the hard X-ray (20-100 keV) variability of the Galactic Center (GC) and of the nearby sources on the time scale of 1000 s. We find that 3 of the 6 hard X-ray sources detected by INTEGRAL within the central 1 degree of the Galaxy are not variable on this time scale: the GC itself (the source IGR J1745.6-2901) as well as the source 1E 1743.1-2843 and the molecular cloud Sgr B2. We put an upper limit of 5 x 10^{-12} erg/(cm^2 sec) (in 20 to 60 keV band) on the variable emission form the supermassive black hole (the source Sgr A*) which powers the activity of the GC(although we can not exclude the possibility of rare stronger flares). The non-variable 20-100 keV emission from the GC turns out to be the high-energy non-thermal tail of the diffuse hard ``8 keV component of emission from Sgr A region. Combining the XMM-Newton and INTEGRAL data we find that the size of the extended hard X-ray emission region is about 20 pc. The only physical mechanism of production of diffuse non-thermal hard X-ray flux, which does not contradict the multi-wavelength data on the GC, is the synchrotron emission from electrons of energies 10-100 TeV.
This paper reports that the X-ray spectrum from the Galactic Center X-ray Emission (GCXE) is expressed by the assembly of active binaries, non-magnetic Cataclysmic Variables, magnetic Cataclysmic Variables (X-ray active star: XAS), cold matter and diffuse sources. In the fitting of the limited components of the XASs, the GCXE spectrum exhibits significant excesses with $chi^2/d.o.f. =5.67$. The excesses are found at the energies of K$alpha$, He$alpha$, Ly$alpha$ and radiative recombination continuum of S, Fe and Ni. By adding components of the cold matter and the diffuse sources, the GCXE spectrum is nicely reproduced with $chi^2/d.o.f. = 1.53$, which is a first quantitative model for the origin of the GCXE spectrum. The drastic improvement is mainly due to the recombining plasmas in the diffuse sources, which indicate the presence of high-energy activity of Sgr A$^*$ in the past of $> 1000$~years.
We examine the X-ray spectra and variability of the sample of X-ray sources with L_X = 10^{31}-10^{33} erg s^{-1} identified within the inner 9 of the Galaxy. Very few of the sources exhibit intra-day or inter-month variations. We find that the spectra of the point sources near the Galactic center are very hard between 2--8 keV, even after accounting for absorption. When modeled as power laws the median photon index is Gamma=0.7, while when modeled as thermal plasma we can only obtain lower limits to the temperature of kT>8 keV. The combined spectra of the point sources is similarly hard, with a photon index of Gamma=0.8. Strong line emission is observed from low-ionization, He-like, and H-like Fe, both in the average spectra and in the brightest individual sources. The line ratios of the highly-ionized Fe in the average spectra are consistent with emission from a plasma in thermal equilibrium. This line emission is observed whether average spectra are examined as a function of the count rate from the source, or as a function of the hardness ratios of individual sources. This suggests that the hardness of the spectra may in fact to due local absorption that partially-covers the X-ray emitting regions in the Galactic center systems. We suggest that most of these sources are intermediate polars, which (1) often exhibit hard spectra with prominent Fe lines, (2) rarely exhibit either flares on short time scales or changes in their mean X-ray flux on long time scales, and (3) are the most numerous hard X-ray sources with comparable luminosities in the Galaxy.