No Arabic abstract
Since the discovery of the largest positive superhump period in TV Col, we have started a program to search for superhumps in CVs with large orbital periods. Here, we summarize preliminary results of TX Col and V4742 Sgr. TX Col is an intermediate polar with a 5.7-h orbital period. V4742 Sgr is a recent nova with no known periods. CCD unfiltered continuous photometry of these 2 objects was carried out during 56 nights in 2002-3. In TX Col, in addition to the orbital period of 5.7 h, we found peaks at 7.1 h and 5.0 h. These are interpreted as positive and negative superhumps correspondingly, although the effects of the quasi-periodic oscillations at about 2 h were not taken into consideration. In the light curve of V4742 Sgr 2 long periods are detected -- 6.1 and 5.4 h as well as a short-term period at 1.6 h. This result suggests that V4742 Sgr is an intermediate polar candidate and a permanent superhump system with a large orbital period (5.4 h) and a superhump period excess of 13 percent. If these results are confirmed, TX Col, V4742 Sgr and TV Col form a group of intermediate polars with extremely large superhump periods. There seems to be now growing evidence that superhumps can occur in intermediate polars with long orbital periods, which is very likely inconsistent with the theoretical prediction that superhumps can only occur in systems with mass ratios below 0.33. Alternatively, if the mass ratio in these systems is nevertheless below the theoretical limit, they should harbour undermassive secondaries and massive white dwarfs, near the Chandrasekhar limit, which would make them excellent candidates for progenitors of supernovae type Ia.
We report on the detection of an ~5900 s quasi-periodic variation in the extensive photometry of TX Col spanning 12 years. We discuss five different models to explain this period. We favour a mechanism where the quasi-periodic variation results from the beating of the Keplerian frequency of the `blobs orbiting in the outer accretion disc with the spin frequency, and from modulated accretion of these `blobs taking place in a shocked region near the disc/magnetosphere boundary.
We report K2 observations of the eclipsing cataclysmic variable V729 Sgr which covered nearly 80 days in duration. We find five short outbursts and two long outbursts, one of which shows a clear plateau phase in the rise to maximum brightness. The mean time between successive short outbursts is ~10 d while the time between the two long outbursts is ~38 d. The frequency of these outbursts are unprecedented for a CV above the orbital period gap. We find evidence that the mid-point of the eclipse occurs systematically earlier in outburst than in quiescence. During five of the six quiescent epochs we find evidence for a second photometric period which is roughly 5 percent shorter than the 4.16 h orbital period which we attribute to negative superhumps. V729 Sgr is therefore one of the longest period CVs to show negative superhumps during quiescence.
One of the fundamental properties of an intermediate polar is the dynamical nature of the accretion flow as it encounters the white dwarfs magnetosphere. Many works have presumed a dichotomy between disk-fed accretion, in which the WD accretes from a Keplerian disk, and stream-fed accretion, in which the matter stream from the donor star directly impacts the WDs magnetosphere without forming a disk. However, there is also a third, poorly understood regime in which the accretion flow consists of a torus of diamagnetic blobs that encircles the WD. This mode of accretion is expected to exist at mass-transfer rates below those observed during disk-fed accretion, but above those observed during pure stream-fed accretion. We invoke the diamagnetic-blob regime to explain the exceptional TESS light curve of the intermediate polar TX Col, which transitioned into and out of states of enhanced accretion during Cycles 1 and 3. Power-spectral analysis reveals that the accretion was principally stream-fed. However, when the mass-transfer rate spiked, large-amplitude quasi-periodic oscillations (QPOs) abruptly appeared and dominated the light curve for weeks. The QPOs have two striking properties: they appear in a stream-fed geometry at elevated accretion rates, and they occur preferentially within a well-defined range of frequencies (~10-25 cycles per day). We propose that during episodes of enhanced accretion, a torus of diamagnetic blobs forms near the binarys circularization radius and that the QPOs are beats between the white dwarfs spin frequency and unstable blob orbits within the WDs magnetosphere. We discuss how such a torus could be a critical step in producing an accretion disk in a formerly diskless system.
We present analysis and results of a coordinated CCD photometry campaign to observe the 2006 June superoutburst of the cataclysmic variable V1316 Cyg involving 8 longitudinally-distributed observers. The outburst peaked at magnitude 15.03 on June 10, declined at a rate of 0.14 mag/day, lasted 11 days and had an amplitude above quiescence of 2.4 magnitudes. We detected common superhumps for the first time, thereby confirming that V1316 Cyg is a member of the UGSU class of dwarf novae. We observed a transition to late superhumps two-thirds of the way through the outburst with an associated phase shift of 0.50 +/- 0.06 cycles. The mean common superhump period before this transition was 0.07685 +/- 0.00003 d and the mean late superhump period following the transition was 0.07654 +/- 0.00002 d. The common superhump period decreased at a rate dP/dt = -5.1 +/- 1.7 x10^-5 /cycle. At the onset of late superhumps, there was a transient shift in power from the superhump fundamental frequency to its first harmonic and back again. We detected an orbital period of 0.0740 +/- 0.0002 d giving a fractional superhump period excess of 0.038 +/- 0.003 and a mass ratio of 0.167 +/- 0.010. A scalegram analysis of the flickering behaviour of V1316 Cyg found that the alpha and sigma parameters characterising flickering changed significantly during the superoutburst. We also found flickering to be at a relatively much lower level at the beginning of the superoutburst and during two normal outbursts.
We present evidence for Quasi Periodic Oscillations (QPOs) in the recurrent outburst activity from SGR 1806-20 using Rossi X-ray Timing Explorer (RXTE) observations during November 1996. Searching for QPOs in a sample of 30 bursts at similar frequencies to those previously reported in the December 27, 2004 giant flare, we find evidence for a QPO in a burst at 648 Hz at 5.17{sigma} confidence level, lying within 3.75% from the 625 Hz QPO discovered in the giant flare. Two additional features are also detected around 84 and 103 Hz in two other bursts at 4.2{sigma} and 4.8{sigma} confidence level, respectively, which lie within 8.85% and 11.83% respectively from the QPO at 92.5 Hz also detected in the giant flare. Accounting for the number of bursts analyzed the confidence levels for the 84, 103 and 648 Hz becomes 3{sigma}, 3.6{sigma} and 3.4{sigma} respectively. Extending our search to other frequency ranges, we find candidates at 1096, 1230, 2785 and 3690 Hz in 3 different bursts with confidence levels lying between 4.14{sigma}-4.46{sigma}, which is reduced to 2.3{sigma}-3{sigma} after accounting for a certain confirmation bias in each case. The fact that we can find evidence for QPOs in the recurrent bursts at frequencies relatively close to those found in the giant flare is intriguing. We examine the candidate QPOs in relation with those found in the giant flare and discuss their possible physical origin.