We report on the detection of an ~5900 s quasi-periodic variation in the extensive photometry of TX Col spanning 12 years. We discuss five different models to explain this period. We favour a mechanism where the quasi-periodic variation results from the beating of the Keplerian frequency of the `blobs orbiting in the outer accretion disc with the spin frequency, and from modulated accretion of these `blobs taking place in a shocked region near the disc/magnetosphere boundary.
One of the fundamental properties of an intermediate polar is the dynamical nature of the accretion flow as it encounters the white dwarfs magnetosphere. Many works have presumed a dichotomy between disk-fed accretion, in which the WD accretes from a Keplerian disk, and stream-fed accretion, in which the matter stream from the donor star directly impacts the WDs magnetosphere without forming a disk. However, there is also a third, poorly understood regime in which the accretion flow consists of a torus of diamagnetic blobs that encircles the WD. This mode of accretion is expected to exist at mass-transfer rates below those observed during disk-fed accretion, but above those observed during pure stream-fed accretion. We invoke the diamagnetic-blob regime to explain the exceptional TESS light curve of the intermediate polar TX Col, which transitioned into and out of states of enhanced accretion during Cycles 1 and 3. Power-spectral analysis reveals that the accretion was principally stream-fed. However, when the mass-transfer rate spiked, large-amplitude quasi-periodic oscillations (QPOs) abruptly appeared and dominated the light curve for weeks. The QPOs have two striking properties: they appear in a stream-fed geometry at elevated accretion rates, and they occur preferentially within a well-defined range of frequencies (~10-25 cycles per day). We propose that during episodes of enhanced accretion, a torus of diamagnetic blobs forms near the binarys circularization radius and that the QPOs are beats between the white dwarfs spin frequency and unstable blob orbits within the WDs magnetosphere. We discuss how such a torus could be a critical step in producing an accretion disk in a formerly diskless system.
We present the discovery of a low-frequency $approx 5.7$ Hz quasi-periodic oscillation (QPO) feature in observations of the black hole X-ray binary MAXI J1535-571 in its soft-intermediate state, obtained in September-October 2017 by the Neutron Star Interior Composition Explorer (NICER). The feature is relatively broad (compared to other low-frequency QPOs; quality factor $Qapprox 2$) and weak (1.9% rms in 3-10 keV), and is accompanied by a weak harmonic and low-amplitude broadband noise. These characteristics identify it as a weak Type A/B QPO, similar to ones previously identified in the soft-intermediate state of the transient black hole X-ray binary XTE J1550-564. The lag-energy spectrum of the QPO shows increasing soft lags towards lower energies, approaching 50 ms at 1 keV (with respect to a 3-10 keV continuum). This large phase shift has similar amplitude but opposite sign to that seen in Rossi X-ray Timing Explorer data for a Type B QPO from the transient black hole X-ray binary GX 339-4. Previous phase-resolved spectroscopy analysis of the Type B QPO in GX 339-4 pointed towards a precessing jet-like corona illuminating the accretion disk as the origin of the QPO signal. We suggest that this QPO in MAXI J1535-571 may have the same origin, with the different lag sign depending on the scale height of the emitting region and the observer inclination angle.
The OVRO 40-m telescope has been monitoring the 15 GHz radio flux density of over 1200 blazars since 2008. The 15 GHz light curve of the flat spectrum radio quasar J1359+4011 shows a strong and persistent quasi-periodic oscillation. The time-scale of the oscillation varies between 120 and 150 days over a $sim4$ year time span. We interpret this as the active galactic nucleus mass-scaled analog of low-frequency quasi-periodic oscillations from Galactic microquasars, or as evidence of modulation of the accretion flow by thermal instabilites in the inner accretion disc.
We report the discovery in the Rossi X-Ray Timing Explorer data of GRS 1915+105 of a second quasi-periodic oscillation at 34 Hz, simultaneous with that observed at 68 Hz in the same observation. The data corresponded to those observations from 2003 where the 68-Hz oscillation was very strong. The significance of the detection is 4.2 sigma. These observations correspond to a very specific position in the colour-colour diagram for GRS 1915+105, corresponding to a harder spectrum compared to those where a 41 Hz oscillation was discovered. We discuss the possible implications of the new pair of frequencies comparing them with the existing theoretical models.
Since the discovery of the largest positive superhump period in TV Col, we have started a program to search for superhumps in CVs with large orbital periods. Here, we summarize preliminary results of TX Col and V4742 Sgr. TX Col is an intermediate polar with a 5.7-h orbital period. V4742 Sgr is a recent nova with no known periods. CCD unfiltered continuous photometry of these 2 objects was carried out during 56 nights in 2002-3. In TX Col, in addition to the orbital period of 5.7 h, we found peaks at 7.1 h and 5.0 h. These are interpreted as positive and negative superhumps correspondingly, although the effects of the quasi-periodic oscillations at about 2 h were not taken into consideration. In the light curve of V4742 Sgr 2 long periods are detected -- 6.1 and 5.4 h as well as a short-term period at 1.6 h. This result suggests that V4742 Sgr is an intermediate polar candidate and a permanent superhump system with a large orbital period (5.4 h) and a superhump period excess of 13 percent. If these results are confirmed, TX Col, V4742 Sgr and TV Col form a group of intermediate polars with extremely large superhump periods. There seems to be now growing evidence that superhumps can occur in intermediate polars with long orbital periods, which is very likely inconsistent with the theoretical prediction that superhumps can only occur in systems with mass ratios below 0.33. Alternatively, if the mass ratio in these systems is nevertheless below the theoretical limit, they should harbour undermassive secondaries and massive white dwarfs, near the Chandrasekhar limit, which would make them excellent candidates for progenitors of supernovae type Ia.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!
N. Mhlahlo
,D.A.H. Buckley
,V.S. Dhillon
.
(2007)
.
"The Discovery of a Persistent Quasi-Periodic Oscillation in the Intermediate Polar TX Col"
.
Nceba Mhlahlo
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا