Do you want to publish a course? Click here

Radio-optical flux behavior and spectral energy distribution of the intermediate blazar GC 0109+224

62   0   0.0 ( 0 )
 Added by Stefano Ciprini Dr.
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

About twenty years of radio observations in five bands (from 4.8 to 37 GHz) of the BL Lac object GC 0109+224 (S2 0109+22, RGB J0112+227), are presented and analysed together with the optical data. Over the past ten years this blazar has exhibited enhanced activity. There is only weak correlation between radio and optical flares delays, usually protracted on longer timescales in the radio with respect to the optical. In some cases no radio flare counterpart was observed for the optical outbursts. The radio variability, characterised by peaks superposition, shows hints of some characteristic timescales (around the 3-4 years), and a fluctuation mode between the flickering and the shot noise. The reconstructed spectral energy distribution, poorly monitored at high energies, is preliminarily parameterised with a synchrotron-self Compton description. The smooth synchrotron continuum, peaked in the near-IR-optical bands, strengthens the hypothesis that this source could be an intermediate blazar. Moreover the intense flux in millimetre bands, and the optical and X-ray brightness, might suggest a possible detectable gamma-ray emission.



rate research

Read More

We present the most continuous data base of optical $BVR_{c}I_{c}$ observations ever published on the BL Lacertae object GC 0109+224, collected mainly by the robotic telescope of the Perugia University Observatory in the period November 1994-February 2002. These observations have been complemented by data from the Torino Observatory, collected in the period July 1995-January 1999, and Mt. Maidanak Observatory (December 2000). GC 0109+224 showed rapid optical variations and six major outbursts were observed at the beginning and end of 1996, in fall 1998, at the beginning and at the end of 2000, and at the beginning of 2002. Fast and large-amplitude drops characterized its flux behaviour. The $R_c$ magnitude ranged from 13.3 (16.16 mJy) to 16.46 (0.8 mJy), with a mean value of 14.9 (3.38 mJy). In the periods where we collected multi-filter observations, we analyzed colour and spectral indexes, and the variability patterns during some flares. The long-term behaviour seems approximatively achromatic, but during some isolated outbursts we found evidence of the typical loop-like hysteresis behaviour, suggesting that rapid optical variability is dominated by non-thermal cooling of a single emitting particle population. We performed also a statistical analysis of the data, through the discrete correlation function (DCF), the structure function (SF), and the Lomb-Scargle periodogram, to identify characteristic times scales, from days to months, in the light curves, and to quantify the mode of variability. We also include the reconstruction of the historical light curve and a photometric calibration of comparison stars, to favour further extensive optical monitoring of this interesting blazar.
Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z > 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep, but we also find ultra-steep SEDs. In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least 18% of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 solar masses per year.
265 - B. Rani 2010
The emission from blazars is known to be variable at all wavelengths. The flux variability is often accompanied by spectral changes. Spectral energy distribution (SED) changes must be associated with changes in the spectra of emitting electrons and/or the physical parameters of the jet. Meaningful modeling of blazar broadband spectra is required to understand the extreme conditions within the emission region. Not only is the broadband SED crucial, but also information about its variability is needed to understand how the highest states of emission occur and how they differ from the low states. This may help in discriminating between models. Here we present the results of our SED modeling of the blazar S5 0716+714 during various phases of its activity. The SEDs are classified into different bins depending on the optical brightness state of the source.
The radio galaxy IC310 located in the Perseus Cluster is one of the brightest objects in the radio and X-ray bands, and one of the closest active galactic nuclei observed in very-high energies. In GeV - TeV $gamma$-rays, IC310 was detected in low and high flux states by the MAGIC telescopes from October 2009 to February 2010. Taking into account that the spectral energy distribution (SED) up to a few GeV seems to exhibit a double-peak feature and that a single-zone synchrotron self-Compton (SSC) model can explain all of the multiwavelength emission except for the non-simultaneous MAGIC emission, we interpret, in this work, the multifrequency data set of the radio galaxy IC310 in the context of homogeneous hadronic and leptonic models. In the leptonic framework, we present a multi-zone SSC model with two electron populations to explain the whole SED whereas for the hadronic model, we propose that a single-zone SSC model describes the SED up to a few GeVs and neutral pion decay products resulting from p$gamma$ interactions could describe the TeV - GeV $gamma$-ray spectra. These interactions occur when Fermi-accelerated protons interact with the seed photons around the SSC peaks. We show that, in the leptonic model the minimum Lorentz factor of second electron population is exceedingly high $gamma_esim10^5$ disfavoring this model, and in the hadronic model the required proton luminosity is not extremely high $sim 10^{44}$ erg/s, provided that charge neutrality between the number of electrons and protons is given. Correlating the TeV $gamma$-ray and neutrino spectra through photo-hadronic interactions, we find that the contribution of the emitting region of IC310 to the observed neutrino and ultra-high-energy cosmic ray fluxes are negligible.
MOJAVE is a VLBI program which monitors a statistically complete, radio-selected sample of 135 relativistically beamed, flat-spectrum active galactic nuclei for over more than a decade. In order to understand the high-energy behavior of this radio complete sample, we are performing Swift fill-in observations on the complete MOJAVE-I sample since 2007. The complete study of the spectral energy distribution from radio to X-ray bands on this radio-selected sample will provide us an opportunity to understand the nature of AGN. Here we present the preliminary results of the spectral energy distributions of six gamma-quiet or faint sources from this project: NRAO 140, PKS 0403-13, PKS B0422+004, PKS 0823+033, 3C 309.1, and 3C 380.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا