Do you want to publish a course? Click here

Modeling the Spectral Energy Distribution of the radio galaxy IC310

60   0   0.0 ( 0 )
 Added by Nissim Fraija
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radio galaxy IC310 located in the Perseus Cluster is one of the brightest objects in the radio and X-ray bands, and one of the closest active galactic nuclei observed in very-high energies. In GeV - TeV $gamma$-rays, IC310 was detected in low and high flux states by the MAGIC telescopes from October 2009 to February 2010. Taking into account that the spectral energy distribution (SED) up to a few GeV seems to exhibit a double-peak feature and that a single-zone synchrotron self-Compton (SSC) model can explain all of the multiwavelength emission except for the non-simultaneous MAGIC emission, we interpret, in this work, the multifrequency data set of the radio galaxy IC310 in the context of homogeneous hadronic and leptonic models. In the leptonic framework, we present a multi-zone SSC model with two electron populations to explain the whole SED whereas for the hadronic model, we propose that a single-zone SSC model describes the SED up to a few GeVs and neutral pion decay products resulting from p$gamma$ interactions could describe the TeV - GeV $gamma$-ray spectra. These interactions occur when Fermi-accelerated protons interact with the seed photons around the SSC peaks. We show that, in the leptonic model the minimum Lorentz factor of second electron population is exceedingly high $gamma_esim10^5$ disfavoring this model, and in the hadronic model the required proton luminosity is not extremely high $sim 10^{44}$ erg/s, provided that charge neutrality between the number of electrons and protons is given. Correlating the TeV $gamma$-ray and neutrino spectra through photo-hadronic interactions, we find that the contribution of the emitting region of IC310 to the observed neutrino and ultra-high-energy cosmic ray fluxes are negligible.



rate research

Read More

As a constraint for new starburst/AGN models of IRAS bright galaxies we determine the radio spectra of 31 luminous and ultraluminous IRAS galaxies (LIRGs/ULIRGs). We construct the radio spectra using both new and archival data. From our sample of radio spectra we find that very few have a straight power-law slope. Although some sources show a flattening of the radio spectral slope at high frequencies the average spectrum shows a steepening of the radio spectrum from 1.4 to 22.5 GHz. This is unexpected because in sources with high rates of star formation we expect flat spectrum, free-free emission to make a significant contribution to the radio flux at higher radio frequencies. Despite this trend the radio spectral indices between 8.4 and 22.5 GHz are flatter for sources with higher values of the FIR-radio flux density ratio q, when this is calculated at 8.4 GHz. Therefore, sources that are deficient in radio emission relative to FIR emission (presumably younger sources) have a larger thermal component to their radio emission. However, we find no correlation between the radio spectral index between 1.4 and 4.8 GHz and q at 8.4 GHz. Because the low frequency spectral index is affected by free-free absorption, and this is a function of source size for a given mass of ionized gas, this is evidence that the ionized gas in ULIRGs shows a range of densities. The youngest LIRGs and ULIRGs are characterized by a larger contribution to their high-frequency radio spectra from free-free emission. However, the youngest sources are not those that have the greatest free-free absorption at low radio frequencies. The sources in which the effects of free-free absorption are strongest are instead the most compact sources. Although these have the warmest FIR colours, they are not necessarily the youngest sources.
Following the discovery of high-energy (HE; $E>10,{rm MeV}$) and very-high-energy (VHE; $E>100,{rm GeV}$) $gamma$-ray emission from the low-frequency-peaked BL~Lac (LBL) object AP Librae, its electromagnetic spectrum is studied over 60 octaves in energy. Contemporaneous data in radio, optical and UV together with the $gamma$-ray data are used to construct the most precise spectral energy distribution of this source. The data have been found to be modeled with difficulties with single zone homogeneous leptonic synchrotron self-Compton (SSC) radiative scenarios due to the unprecedented width of the high-energy component when compared to the lower-energy component. The two other LBL objects also detected at VHE appear to have similar modeling difficulties. Nevertheless, VHE $gamma$ rays produced in the extended jet could account for the VHE flux observed by H.E.S.S.
Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z > 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep, but we also find ultra-steep SEDs. In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least 18% of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 solar masses per year.
We have carried out a detailed modeling of the dust Spectral Energy Distribution (SED) of the nearby, starbursting dwarf galaxy NGC 4214. A key point of our modeling is that we distinguish the emission from (i) HII regions and their associated photodissociation regions (PDRs) and (ii) diffuse dust. For both components we apply templates from the literature calculated with a realistic geometry and including radiation transfer. The large amount of existing data from the ultraviolet (UV) to the radio allows the direct measurement of most of the input parameters of the models. We achieve a good fit for the total dust SED of NGC 4214. In the present contribution we describe the available data, the data reduction and the determination of the model parameters, whereas a description of the general outline of our work is presented in the contribution of Lisenfeld et al. in this volume.
Powerful new, high resolution, high sensitivity, multi-frequency, wide-field radio surveys such as the Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) are emerging. They will offer fresh opportunities to undertake new determinations of useful parameters for various kinds of extended astrophysical phenomena. Here, we consider specific application to angular size determinations of Planetary Nebulae (PNe) via a new radio continuum Spectral Energy Distribution (SED) fitting technique. We show that robust determinations of angular size can be obtained, comparable to the best optical and radio observations but with the potential for consistent application across the population. This includes unresolved and/or heavily obscured PNe that are extremely faint or even non-detectable in the optical.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا