Do you want to publish a course? Click here

Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts

76   0   0.0 ( 0 )
 Added by Adrian Pope
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present estimates of cosmological parameters from the application of the Karhunen-Loeve transform to the analysis of the 3D power spectrum of density fluctuations using Sloan Digital Sky Survey galaxy redshifts. We use Omega_m*h and f_b = Omega_b/Omega_m to describe the shape of the power spectrum, sigma8 for the (linearly extrapolated) normalization, and beta to parametrize linear theory redshift space distortions. On scales k < 0.16 h/Mpc, our maximum likelihood values are Omega_m*h = 0.264 +/-0.043, f_b = 0.286 +/- 0.065, sigma8 = 0.966 +/- 0.048, and beta = 0.45 +/- 0.12. When we take a prior on Omega_b from WMAP, we find Omega_m*h = 0.207 +/- 0.030, which is in excellent agreement with WMAP and 2dF. This indicates that we have reasonably measured the gross shape of the power spectrum but we have difficulty breaking the degeneracy between Omega_m*h and f_b because the baryon oscillations are not resolved in the current spectroscopic survey window function.



rate research

Read More

Astronomy is changing. Large projects, large collaborations, and large budgets are becoming the norm. The Sloan Digital Sky Survey (SDSS) is one example of this new astronomy, and in operating the original survey, we put in place and learned many valuable operating principles. Scientists sometimes have the tendency to invent everything themselves but when budgets are large, deadlines are many, and both are tight, learning from others and applying it appropriately can make the difference between success and failure. We offer here our experiences well as our thoughts, opinions, and beliefs on what we learned in operating the SDSS.
We correlate the positions of 13,240 Brightest Cluster Galaxies (BCGs) with 0.1 <= z <= 0.3 from the maxBCG catalog with radio sources from the FIRST survey to study the sizes and distributions of radio AGN in galaxy clusters. We find that 19.7% of our BCGs are associated with FIRST sources, and this fraction depends on the stellar mass of the BCG, and to a lesser extent on the richness of the parent cluster (in the sense of increasing radio loudness with increasing mass). The intrinsic size of the radio emission associated with the BCGs peaks at 55 kpc, with a tail extending to 200 kpc. The radio power of the extended sources places them on the divide between FR I and FR II type sources, while sources compact in the radio tend to be somewhat less radio-luminous. We also detect an excess of radio sources associated with the cluster, instead of with the BCG itself, extending out to ~1.4 Mpc.
We study the stellar populations of SNe Ia host galaxies using SDSS-II spectroscopy. We focus on the relationships of SNe Ia properties with stellar velocity dispersion and the stellar population parameters age, metallicity and element abundance ratios derived by fitting absorption line indices to stellar population models. We concentrate on a sub-sample of 84 SNe Ia from the SDSS-II Supernova Survey. In agreement with previous findings, we find that SALT2 stretch factor values show the strongest dependence on stellar population age. Hence, SNe Ia peak-luminosity is closely related to the age of the stellar progenitor systems, where more luminous SNe Ia appear in younger stellar populations. We find no statistically significant trends in the Hubble residual with any of the stellar population parameters studied, including age and metallicity contrary to the literature, as well as with stellar velocity dispersion. Moreover, we find that the method of stellar mass derivation is affecting the Hubble residual-mass relationship when lower number statistics are used. We extend the sample to also include SNe Ia with available SDSS host galaxy photometry only. For this larger sample (247 objects) the reported Hubble residual-mass relation is strongly dependent on the stellar mass range studied and behaves as a step function. In the high mass regime, probed by our host spectroscopy sample, the relation between Hubble residual and stellar mass is flat. Below a stellar mass of ~2x10^10 Msun, i.e. close to the evolutionary transition mass of low-redshift galaxies reported in the literature, the trend changes dramatically such that lower mass galaxies possess lower luminosity SNe Ia after light-curve corrections. This non-linear behaviour of the Hubble residual-mass relationship should be accounted for when using stellar mass as a further parameter for minimising the Hubble residuals.
We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift desert between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame $U$-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.
We present a catalog of galaxy clusters selected using the maxBCG redsequence method from Sloan Digital Sky Survey photometric data. This catalog includes 13,823 clusters with velocity dispersions greater than 400 km/s, and is the largest galaxy cluster catalog assembled to date. They are selected in an approximately volume-limited way from a 0.5 Gpc^3 region covering 7500 square degrees of sky between redshifts 0.1 and 0.3. (ABRIGDED)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا