No Arabic abstract
We present a catalog of galaxy clusters selected using the maxBCG redsequence method from Sloan Digital Sky Survey photometric data. This catalog includes 13,823 clusters with velocity dispersions greater than 400 km/s, and is the largest galaxy cluster catalog assembled to date. They are selected in an approximately volume-limited way from a 0.5 Gpc^3 region covering 7500 square degrees of sky between redshifts 0.1 and 0.3. (ABRIGDED)
Using the photometric redshifts of galaxies from the Sloan Digital Sky Survey III (SDSS-III), we identify 132,684 clusters in the redshift range of 0.05<z<0.8. Monte Carlo simulations show that the false detection rate is less than 6% for the whole sample. The completeness is more than 95% for clusters with a mass of M_{200}>1.0*10^{14} M_{odot} in the redshift range of 0.05<z<0.42, while clusters of z>0.42 are less complete and have a biased smaller richness than the real one due to incompleteness of member galaxies. We compare our sample with other cluster samples, and find that more than 90% of previously known rich clusters of 0.05<z<0.42 are matched with clusters in our sample. Richer clusters tend to have more luminous brightest cluster galaxies (BCGs). Correlating with X-ray and the Planck data, we show that the cluster richness is closely related to the X-ray luminosity, temperature and Sunyaev-Zeldovich measurements. Comparison of the BCGs with the SDSS luminous red galaxy (LRG) sample shows that 25% of LRGs are BCGs of our clusters and 36% of LRGs are cluster member galaxies. In our cluster sample, 63% of BCGs of r_{petro}<19.5 satisfy the SDSS LRG selection criteria.
We correlate the positions of 13,240 Brightest Cluster Galaxies (BCGs) with 0.1 <= z <= 0.3 from the maxBCG catalog with radio sources from the FIRST survey to study the sizes and distributions of radio AGN in galaxy clusters. We find that 19.7% of our BCGs are associated with FIRST sources, and this fraction depends on the stellar mass of the BCG, and to a lesser extent on the richness of the parent cluster (in the sense of increasing radio loudness with increasing mass). The intrinsic size of the radio emission associated with the BCGs peaks at 55 kpc, with a tail extending to 200 kpc. The radio power of the extended sources places them on the divide between FR I and FR II type sources, while sources compact in the radio tend to be somewhat less radio-luminous. We also detect an excess of radio sources associated with the cluster, instead of with the BCG itself, extending out to ~1.4 Mpc.
We present and describe a catalog of galaxy photometric redshifts (photo-zs) for the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6). We use the Artificial Neural Network (ANN) technique to calculate photo-zs and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for ~ 77 million objects classified as galaxies in DR6 with r < 22. The photo-z and photo-z error estimators are trained and validated on a sample of ~ 640,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by SDSS, 2SLAQ, CFRS, CNOC2, TKRS, DEEP, and DEEP2. For the two best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than sigma_{68} =0.021 or $0.024. After presenting our results and quality tests, we provide a short guide for users accessing the public data.
We present the Data Release 9 Quasar (DR9Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the survey, are spectrocopically confirmed as quasars via visual inspection, have luminosities Mi[z=2]<-20.5 (in a $Lambda$CDM cosmology with H0 = 70 km/s/Mpc, $Omega_{rm M}$ = 0.3, and $Omega_{Lambda}$ = 0.7) and either display at least one emission line with full width at half maximum (FWHM) larger than 500 km/s or, if not, have interesting/complex absorption features. It includes as well, known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. This catalog contains 87,822 quasars (78,086 are new discoveries) detected over 3,275 deg$^{2}$ with robust identification and redshift measured by a combination of principal component eigenspectra newly derived from a training set of 8,632 spectra from SDSS-DR7. The number of quasars with $z>2.15$ (61,931) is ~2.8 times larger than the number of z>2.15 quasars previously known. Redshifts and FWHMs are provided for the strongest emission lines (CIV, CIII], MgII). The catalog identifies 7,533 broad absorption line quasars and gives their characteristics. For each object the catalog presents five-band (u,g,r,i,z) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys.
We present the Data Release 10 Quasar (DR10Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the first 2.5 years of the survey and that are confirmed as quasars via visual inspection of the spectra. The catalog also includes known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 166,583 quasars (74,454 are new discoveries since SDSS-DR9) detected over 6,373 deg$^{2}$ with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with $z>2.15$ (117,668) is $sim$5 times greater than the number of $z>2.15$ quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (CIV, CIII, MgII). The catalog identifies 16,461 broad absorption line quasars and gives their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag and information on the optical morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3,600-10,500AA at a spectral resolution in the range 1,300$<$R$<$2,500; the spectra can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 2,376 quasars that have been identified among the galaxy targets of the SDSS-III/BOSS.