Do you want to publish a course? Click here

Direct Confirmation of Two Pattern Speeds in the Double Barred Galaxy NGC 2950

62   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present surface photometry and stellar kinematics of NGC 2950, which is a nearby and undisturbed SB0 galaxy hosting two nested stellar bars. We use the Tremaine-Weinberg method to measure the pattern speed of the primary bar. This also permits us to establish directly and for the first time that the two nested bars are rotating with different pattern speeds, and in particular that the rotation frequency of the secondary bar is higher than that of the primary one.



rate research

Read More

Based on a high quality $N$-body simulation of a double bar galaxy model, we investigate the evolution of the bar properties, including their size, strength and instantaneous pattern speed derived by using three distinct methods: the Fourier, Jacobi integral, and moment of inertia methods. The interaction of the two bars, which rotate at distinct speeds, primarily affects the size, strength and pattern speed of the inner bar. When the two bars are perpendicular to each other, the size and the pattern speed of the inner bar decrease and its strength increases. The emergence of a strong Fourier $m=1$ mode increases the oscillation amplitude of the size, strength and pattern speed of the inner bar. On the other hand, the characteristics of the outer bar are substantially influenced by its adjacent spiral structure. When the spiral structure disappears, the size of the outer bar increases and its strength and pattern speed decrease. Consequently, the ratio of the pattern speed of the outer bar with respect to the inner bar is not constant and increases with time. Overall, the double bar and disk system displays substantial high frequency semi-chaotic fluctuations of the pattern strengths and speeds both in space and time, superposed on the slow secular evolution, which invalidates the assumption that the actions of individual stars should be well conserved in barred galaxies, such as the Milky Way.
When integrals in the standard Tremaine-Weinberg method are evaluated for the case of a realistic model of a doubly barred galaxy, their modifications introduced by the second rotating pattern are in accord with what can be derived from a simple extension of that method, based on separation of tracers density. This extension yields a qualitative argument that discriminates between prograde and retrograde inner bars. However, the estimate of the value of inner bars pattern speed requires further assumptions. When this extension of the Tremaine-Weinberg method is applied to the recent observation of the doubly barred galaxy NGC 2950, it indicates that the inner bar there is counter-rotating, possibly with the pattern speed of -140 +/- 50 km/s/arcsec. The occurrence of counter-rotating inner bars can constrain theories of galaxy formation.
In the manifold theory of spiral structure in barred galaxies, the usual assumption is that the spirals rotate with the same pattern speed as the bar. Here we generalize the manifold theory under the assumption that the spirals rotate with different pattern speed than the bar. More generally, we consider the case when one or more modes, represented by the potentials V_2, V_3, ldots, co-exist in the galactic disc in addition to the bars mode V_{bar}, but rotate with pattern speeds Omega_2, Omega_3, ldots incommensurable between themselves and with Omega_{bar}. Through a perturbative treatment (assuming that V_2,V_3... are small with respect to V_{bar}) we then show that the unstable Lagrangian points L_1, L_2 of the pure bar model (V_{bar},Omega_{bar}) are `continued in the full model as periodic orbits, when we have one extra pattern speed different from Omega_{bar}, or as epicyclic `Lissajous-like unstable orbits, when we have more than one extra pattern speeds. As an example we compute the generalized orbits GL_1, GL_2 and their manifolds in a Milky-way like model with bar and spiral pattern speeds assumed different. We find that the manifolds produce a time-varying morphology consisting of segments of spirals or `pseudorings. These structures are repeated after a period equal to half the relative period of the imposed spirals with respect to the bar. Along one period, the manifold-induced time-varying structures are found to continuously support at least some part of the imposed spirals, except at short intervals around those times at which the relative phase of the imposed spirals with respect to the bar becomes equal to pmpi/2. A connection of these effects to the phenomenon of recurrent spirals is discussed.
285 - Witold Maciejewski 2009
The method to study oscillating potentials of double bars, based on invariant loops, is introduced here in a new way, intended to be more intelligible. Using this method, I show how the orbital structure of a double-barred galaxy (nested bars) changes with the variation of nuclear bars pattern speed. Not all pattern speeds are allowed when the inner bar rotates in the same direction as the outer bar. Below certain minimum pattern speed orbital support for the inner bar abruptly disappears, while high values of this speed lead to loops that are increasingly round. For values between these two extremes, loops supporting the inner bar extend further out as its pattern speed decreases, and they become more eccentric and pulsate more. These findings do not apply to counter-rotating inner bars.
60 - V. Cuomo 2019
We aim at investigating the formation process of weak bars by measuring their properties in a sample of 29 nearby SAB galaxies, spanning a wide range of morphological types and luminosities. The sample galaxies were selected to have an intermediate inclination, a bar at an intermediate angle between the disc minor and major axes, and an undisturbed morphology and kinematics to allow the direct measurement of the bar pattern speed. Combining our analysis with previous studies, we compared the properties of weak and strong bars. We measured the bar radius and strength from the r-band images available in SDSS and bar pattern speed and corotation radius from the stellar kinematics obtained by CALIFA. We derived the bar rotation rate as the ratio between the corotation and bar radii. Thirteen out of 29 galaxies, which were morphologically classified as SABs from a visual inspection, do not actually host a bar component or their central elongated component is not in rigid rotation. We successfully derived the bar pattern speed in 16 objects. Two of them host an ultrafast bar. Using the bar strength to differentiate weak and strong bars, we found that the SABs host shorter bars with smaller corotation radii than their strongly barred counterparts. Weak and strong bars have similar bar pattern speeds and rotation rates, which are all consistent with being fast. We did not observe any difference between the bulge prominence in SAB and SB galaxies, whereas nearly all the weak bars reside in the disc inner parts, contrary to strong bars. We ruled out that the bar weakening is only related to the bulge prominence and that the formation of weak bars is triggered by the tidal interaction with a companion. Our observational results suggest that weak bars may be evolved systems exchanging less angular momentum with other galactic components than strong bars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا