Do you want to publish a course? Click here

A Resolved Circumstellar Disk around the Herbig Ae Star HD 100546 in the Thermal Infrared

319   0   0.0 ( 0 )
 Added by Wilson M. Liu
 Publication date 2003
  fields Physics
and research's language is English
 Authors W.M. Liu




Ask ChatGPT about the research

We present mid-infrared nulling interferometric and direct imaging observations of the Herbig Ae star HD 100546 obtained with the Magellan I (Baade) 6.5 m telescope. The observations show resolved circumstellar emission at 10.3, 11.7, 12.5, 18.0, and 24.5 microns. Through the nulling observations (10.3, 11.7 and 12.5 microns), we detect a circumstellar disk, with an inclination of 45 +- 15 degrees with respect to a face-on disk, a semimajor axis position angle of 150 +- 10 degrees (E of N), and a spatial extent of about 25 AU. The direct images (18.0 and 24.5 microns) show evidence for cooler dust with a spatial extent of 30-40 AU from the star. The direct images also show evidence for an inclined disk with a similar position angle as the disk detected by nulling. This morphology is consistent with models in which a flared circumstellar disk dominates the emission. However, the similarity in relative disk size we derive for different wavelengths suggests that the disk may have a large inner gap, possibly cleared out by the formation of a giant protoplanet. The existence of a protoplanet in the system also provides a natural explanation for the observed difference between HD 100546 and other Herbig Ae stars.



rate research

Read More

182 - M. Goto 2011
The disk atmosphere is one of the fundamental elements of theoretical models of a protoplanetary disk. However, the direct observation of the warm gas (>> 100 K) at large radius of a disk (>> 10 AU) is challenging, because the line emission from warm gas in a disk is usually dominated by the emission from an inner disk. Our goal is to detect the warm gas in the disk atmosphere well beyond 10 AU from a central star in a nearby disk system of the Herbig Be star HD 100546. We measured the excitation temperature of the vibrational transition of CO at incremental radii of the disk from the central star up to 50 AU, using an adaptive optics system combined with the high-resolution infrared spectrograph CRIRES at the VLT. The observation successfully resolved the line emission with 0.1 angular resolution, which is 10 AU at the distance of HD 100546. Population diagrams were constructed at each location of the disk, and compared with the models calculated taking into account the optical depth effect in LTE condition. The excitation temperature of CO is 400-500 K or higher at 50 AU away from the star, where the blackbody temperature in equilibrium with the stellar radiation drops as low as 90 K. This is unambiguous evidence of a warm disk atmosphere far away from the central star.
110 - A. Raman 2005
We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.
A new class of pre-main sequence objects has been recently identified as pre-transitional disks. They present near-infrared excess coupled to a flux deficit at about 10 microns and a rising mid-infrared and far-infrared spectrum. These features suggest a disk structure with inner and outer dust components, separated by a dust-depleted region (or gap). We here report on the first interferometric observations of the disk around the Herbig Ae star HD 139614. Its infrared spectrum suggests a flared disk, and presents pre-transitional features,namely a substantial near-infrared excess accompanied by a dip around 6 microns and a rising mid-infrared part. In this framework, we performed a study of the spectral energy distribution (SED) and the mid-infrared VLTI/MIDI interferometric data to constrain thespatial structure of the inner dust disk region and assess its possibly multi-component structure. We based our work on a temperature-gradient disk model that includes dust opacity. While we could not reproduce the SED and interferometric visibilities with a one-component disk, a better agreement was obtained with a two-component disk model composed of an optically thin inner disk extending from 0.22 to 2.3 au, a gap, and an outer temperature-gradient disk starting at 5.6 au. Therefore, our modeling favors an extended and optically thin inner dust component and in principle rules out the possibility that the near-infrared excess originates only from a spatially confined region. Moreover, the outer disk is characterized by a very steep temperature profile and a temperature higher than 300 K at its inner edge. This suggests the existence of a warm component corresponding to a scenario where the inner edge of the outer disk is directly illuminated by the central star. This is an expected consequence of the presence of a gap, thus indicative of a pre-transitional structure.
51 - L. Chen , A. Kreplin , G. Weigelt 2015
Studies of pre-transitional disks, with a gap region between the inner infrared-emitting region and the outer disk, are important to improving our understanding of disk evolution and planet formation. Previous infrared interferometric observations have shown hints of a gap region in the protoplanetary disk around the Herbig Ae star HD~144432. We study the dust distribution around this star with two-dimensional radiative transfer modeling. We compare the model predictions obtained via the Monte-Carlo radiative transfer code RADMC-3D with infrared interferometric observations and the {SED} of HD~144432. The best-fit model that we found consists of an inner optically thin component at $0.21enDash0.32~AU$ and an optically thick outer disk at $1.4enDash10~AU$. We also found an alternative model in which the inner sub-AU region consists of an optically thin and an optically thick component. Our modeling suggests an optically thin component exists in the inner sub-AU region, although an optically thick component may coexist in the same region. Our modeling also suggests a gap-like discontinuity in the disk of HD~144432.
Spatially resolving the inner dust cavity of the transitional disks is a key to understanding the connection between planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap, in the dust, that was spatially resolved by mid-IR interferometry. Using new NIR interferometric observations, we aim to characterize the 0.1-10~au region of the HD~139614 disk further and identify viable mechanisms for the inner disk clearing. We report the first multiwavelength radiative transfer modeling of the interferometric data acquired on HD~139614 with PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometries. We confirm a gap structure in the um-sized dust, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing surface density profile, and a depletion of 10^3 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD~139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the gaseous disk structure. Indeed, a narrow au-sized gap is expected when a single giant planet interacts with the disk. Assuming that small dust grains are well coupled to the gas, we found that a ~ 3~Mjup planet located at 4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion in gas occurred in the inner disk, in contrast to the dust. However, the dust-depleted inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD~139614 disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا