Do you want to publish a course? Click here

Warm gas at 50 AU in the disk around Herbig Be star HD 100546

183   0   0.0 ( 0 )
 Added by Miwa Goto
 Publication date 2011
  fields Physics
and research's language is English
 Authors M. Goto




Ask ChatGPT about the research

The disk atmosphere is one of the fundamental elements of theoretical models of a protoplanetary disk. However, the direct observation of the warm gas (>> 100 K) at large radius of a disk (>> 10 AU) is challenging, because the line emission from warm gas in a disk is usually dominated by the emission from an inner disk. Our goal is to detect the warm gas in the disk atmosphere well beyond 10 AU from a central star in a nearby disk system of the Herbig Be star HD 100546. We measured the excitation temperature of the vibrational transition of CO at incremental radii of the disk from the central star up to 50 AU, using an adaptive optics system combined with the high-resolution infrared spectrograph CRIRES at the VLT. The observation successfully resolved the line emission with 0.1 angular resolution, which is 10 AU at the distance of HD 100546. Population diagrams were constructed at each location of the disk, and compared with the models calculated taking into account the optical depth effect in LTE condition. The excitation temperature of CO is 400-500 K or higher at 50 AU away from the star, where the blackbody temperature in equilibrium with the stellar radiation drops as low as 90 K. This is unambiguous evidence of a warm disk atmosphere far away from the central star.



rate research

Read More

274 - D. Fedele , , S. Bruderer 2012
We present observations of far-infrared (50-200 micron) OH and H2O emission of the disk around the Herbig Ae star HD 163296 obtained with Herschel/PACS in the context of the DIGIT key program. In addition to strong [OI] emission, a number of OH doublets and a few weak highly excited lines of H2O are detected. The presence of warm H2O in this Herbig disk is confirmed by a line stacking analysis, enabled by the full PACS spectral scan, and by lines seen in Spitzer data. The line fluxes are analyzed using an LTE slab model including line opacity. The water column density is 10^14 - 10^15 cm^-2, and the excitation temperature is 200-300 K implying warm gas with a density n > 10^5 cm^-3. For OH we find a column density of 10^14 - 2x10^15 cm^-2 and T_ex ~ 300-500 K. For both species we find an emitting region of r ~ 15-20 AU from the star. We argue that the molecular emission arises from the protoplanetary disk rather than from an outflow. This far-infrared detection of both H2O and OH contrasts with near- and mid-infrared observations, which have generally found a lack of water in the inner disk around Herbig AeBe stars due to strong photodissociation of water. Given the similarity in column density and emitting region, OH and H2O emission seems to arise from an upper layer of the disk atmosphere of HD 163296, probing a new reservoir of water. The slightly lower temperature of H2O compared to OH suggests a vertical stratification of the molecular gas with OH located higher and water deeper in the disk, consistent with thermo-chemical models.
Studying the physical conditions in circumstellar disks is a crucial step toward understanding planet formation. Of particular interest is the case of HD 100546, a Herbig Be star that presents a gap within the first 13 AU of its protoplanetary disk, that may originate in the dynamical interactions of a forming planet. We gathered a large amount of new interferometric data using the AMBER/VLTI instrument in the H- and K-bands to spatially resolve the warm inner disk and constrain its structure. Then, combining these measurements with photometric observations, we analyze the circumstellar environment of HD 100546 in the light of a passive disk model based on 3D Monte-Carlo radiative transfer. Finally, we use hydrodynamical simulations of gap formation by planets to predict the radial surface density profile of the disk and test the hypothesis of ongoing planet formation. The SED and the NIR interferometric data are adequately reproduced by our model. We show that the H- and K-band emissions are coming mostly from the inner edge of the internal dust disk, located near 0.24 AU from the star, i.e., at the dust sublimation radius in our model. We directly measure an inclination of $33^{circ} pm 11^{circ}$ and a position angle of $140^{circ} pm 16^{circ}$ for the inner disk. This is similar to the values found for the outer disk ($i simeq 42^{circ}$, $PA simeq 145^{circ}$), suggesting that both disks may be coplanar. We finally show that 1 to 8 Jupiter mass planets located at $sim 8$ AU from the star would have enough time to create the gap and the required surface density jump of three orders of magnitude between the inner and outer disk. However, no information on the amount of matter left in the gap is available, which precludes us from setting precise limits on the planet mass, for now.
The disc around the Herbig Ae/Be star HD 100546 is one of the most extensively studied discs in the southern sky. Although there is a wealth of information about its dust content and composition, not much is known about its gas and large scale kinematics. We detect and study the molecular gas in the disc at spatial resolution from 7.7 to 18.9 using the APEX telescope. The lines 12CO J=7-6, J=6-5, J=3-2, 13CO J=3-2 and [C I] 3P2-3P1 are observed, diagnostic of disc temperature, size, chemistry, and kinematics. We use parametric disc models that reproduce the low-J 12CO emission from Herbig~Ae stars and vary the basic disc parameters - temperature, mass and size. Using the molecular excitation and radiative transfer code RATRAN we fit the observed spectral line profiles. Our observations are consistent with more than 0.001 Msun of molecular gas in a disc of approximately 400 AU radius in Keplerian rotation around a 2.5 Msun star, seen at an inclination of 50 degrees. The detected 12CO lines are dominated by gas at 30-70~K. The non-detection of the [C I] line indicates excess ultraviolet emission above that of a B9 type model stellar atmosphere. Asymmetry in the 12CO line emission suggests that one side of the outer disc is colder by 10-20~K than the other, possibly due to a shadow by a warped geometry of the inner disc. Pointing offsets, foreground cloud absorption and asymmetry in the disc extent are excluded scenarios. Efficient heating of the outer disc ensures that low- and high-J 12CO lines are dominated by the outermost disc regions, indicating a 400 AU radius. The 12CO J=6--5 line arises from a disc layer higher above disc midplane, and warmer by 15-20~K than the layer emitting the J=3--2 line. The existing models of discs around Herbig Ae stars, assuming a B9.5 type model stellar atmosphere overproduce the [CI] 3P2--3P1 line intensity from HD 100546 by an order of magnitude.
318 - W.M. Liu 2003
We present mid-infrared nulling interferometric and direct imaging observations of the Herbig Ae star HD 100546 obtained with the Magellan I (Baade) 6.5 m telescope. The observations show resolved circumstellar emission at 10.3, 11.7, 12.5, 18.0, and 24.5 microns. Through the nulling observations (10.3, 11.7 and 12.5 microns), we detect a circumstellar disk, with an inclination of 45 +- 15 degrees with respect to a face-on disk, a semimajor axis position angle of 150 +- 10 degrees (E of N), and a spatial extent of about 25 AU. The direct images (18.0 and 24.5 microns) show evidence for cooler dust with a spatial extent of 30-40 AU from the star. The direct images also show evidence for an inclined disk with a similar position angle as the disk detected by nulling. This morphology is consistent with models in which a flared circumstellar disk dominates the emission. However, the similarity in relative disk size we derive for different wavelengths suggests that the disk may have a large inner gap, possibly cleared out by the formation of a giant protoplanet. The existence of a protoplanet in the system also provides a natural explanation for the observed difference between HD 100546 and other Herbig Ae stars.
102 - A. Carmona , W.F. Thi , I. Kamp 2016
Context: Quantifying the gas content inside the dust gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the disk of HD 139614, a Herbig Ae star with a transition disk exhibiting a dust gap from 2.3 to 6 AU. Methods: We have obtained ESO/VLT CRIRES high-resolution spectra of CO ro-vibrational emission. We derived constraints on the disks structure by modeling the line-profiles, the spectroastrometric signal, and the rotational diagrams using flat Keplerian disk models. Results: We detected v=1-0 12CO, 2-1 12CO, 1-0 13CO, 1-0 C18O, and 1-0 C17O ro-vibrational lines. 12CO v=1-0 lines have an average width of 14 km/s, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km/s narrower, and are dominated by emission at R>6 AU. The 12CO v=1-0 line-profile indicates that if there is a gap in the gas it must be narrower than 2 AU. We find that a drop in the gas surface density (delta_gas) at R<5-6 AU is required to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Delta_gas can range from 10^-2 to 10^-4 depending on the gas-to-dust ratio of the outer disk. We find that at 1<R<6 AU the gas surface density profile is flat or increases with radius. We derive a gas column density at 1<R<6 AU of NH=3x10^19 - 10^21 cm^-2. We find a 5sigma upper limit on NCO at R<1 AU of 5x10^15 cm^-2 (NH<5x10^19 cm^-2). Conclusions: The dust gap in the disk of HD 139614 has gas. The gas surface density in the disk at R<6 AU is significantly lower than the surface density expected from HD 139614s accretion rate assuming a viscous alpha-disk model. The gas density drop, the non-negative density gradient of the gas inside 6 AU, and the absence of a wide (>2 AU) gas gap suggest the presence of an embedded <2 MJ planet at around 4 AU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا