Do you want to publish a course? Click here

On the Correlated X-ray and Optical Evolution of SS Cygni

135   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have analyzed the variability and spectral evolution of the prototype dwarf nova system SS Cygni using RXTE data and AAVSO observations. A series of pointed RXTE/PCA observations allow us to trace the evolution of the X-ray spectrum of SS Cygni in unprecedented detail, while 6 years of optical AAVSO and RXTE/ASM light curves show long-term patterns. Employing a technique in which we stack the X-ray flux over multiple outbursts, phased according to the optical light curve, we investigate the outburst morphology. We find that the 3-12 keV X-ray flux is suppressed during optical outbursts, a behavior seen previously, but only in a handful of cycles. The several outbursts of SS Cygni observed with the more sensitive RXTE/PCA also show a depression of the X-rays during optical outburst. We quantify the time lags between the optical and X-ray outbursts, and the timescales of the X-ray recovery from outburst. The optical light curve of SS Cygni exhibits brief anomalous outbursts. During these events the hard X-rays and optical flux increase together. The long-term data suggest that the X-rays decline between outburst. Our results are in general agreement with modified disk instability models (DIM), which invoke a two-component accretion flow consisting of a cool optically thick accretion disk truncated at an inner radius, and a quasi-spherical hot corona-like flow extending to the surface of the white dwarf. We discuss our results in the framework of one such model, involving the evaporation of the inner part of the optically thick accretion disk, proposed by Meyer & Meyer-Hofmeister (1994).

rate research

Read More

We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer, and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9--1.4d after the beginning of the optical rise and 0.6d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows the propagation time of the outburst heating wave may have been previously overestimated. The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with timescales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray lightcurve. X-ray and extreme-ultraviolet luminosities imply accretion rates of 3e15g/s in quiescence, 1e16g/s when the boundary layer becomes optically thick, and ~1e18g/s at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.
After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20$^{mathrm{th}}$, 15:50 UTC to June 25$^{mathrm{th}}$, 4:05 UTC, from the optical V-band, up to the soft $gamma$-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20--40 keV) within 3 days. The flare recurrence can be as short as $sim$ 20~min from peak to peak. A model-independent analysis shows that the $>$6 Crab flares have a hard spectrum. A simple 10--400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.
We present the results of our intensive radio observing campaign of the dwarf nova SS Cyg during its 2010 April outburst. We argue that the observed radio emission was produced by synchrotron emission from a transient radio jet. Comparing the radio light curves from previous and subsequent outbursts of this system (including high-resolution observations from outbursts in 2011 and 2012) shows that the typical long and short outbursts of this system exhibit reproducible radio outbursts that do not vary significantly between outbursts, which is consistent with the similarity of the observed optical, ultraviolet and X-ray light curves. Contemporaneous optical and X-ray observations show that the radio emission appears to have been triggered at the same time as the initial X-ray flare, which occurs as disk material first reaches the boundary layer. This raises the possibility that the boundary region may be involved in jet production in accreting white dwarf systems. Our high spatial resolution monitoring shows that the compact jet remained active throughout the outburst with no radio quenching.
We present results from the Suzaku observations of the dwarf nova SS Cyg in quiescence and outburst in 2005 November. Owing to high sensitivity of the HXD PIN detector and high spectral resolution of the XIS, we have determined parameters of the plasma with unprecedented precision. The maximum temperature of the plasma in quiescence 20.4 +4.0-2.6 (stat.) +/- 3.0 (sys.) keV is significantly higher than that in outburst 6.0 +0.2-1.3 keV. The elemental abundances are close to the solar ones for the medium-Z elements (Si, S, Ar) whereas they decline both in lighter and heavier elements. Those of oxygen and iron are 0.46 and 0.37 solar, respectively. That of carbon is exceptionally high and 2 solar at least. The solid angle of the reflector subtending over the optically thin thermal plasma is Omega/2pi = 1.7+/-0.2 (stat.) +/-0.1 (sys.) in quiescence. A 6.4 keV iron Ka line is resolved into a narrow and broad components. These facts indicate that both the white dwarf and the accretion disk contribute to the continuum reflection and the 6.4 keV iron Ka line. We consider the standard optically thin boundary layer as the most plausible picture for the plasma configuration in quiescence. The solid angle of the reflector in outburst Omega/2pi = 0.9 +0.5-0.4 and a broad 6.4 keV iron line indicates that the reflection in outburst originates from the accretion disk and an equatorial accretion belt. From the energy width of the 6.4 keV line, we consider the optically thin thermal plasma in outburst as being distributed on the accretion disk like solar coronae.
We have obtained high time resolution (seconds) photometry of LMC X-2 in December 1997, simultaneously with the Rossi X-ray Timing Explorer (RXTE), in order to search for correlated X-ray and optical variability on timescales from seconds to hours. We find that the optical and X-ray data are correlated only when the source is in a high, active X-ray state. Our analysis shows evidence for the X-ray emission leading the optical with a mean delay of <20s. The timescale for the lag can be reconciled with disc reprocessing, driven by the higher energy X-rays, only by considering the lower limit for the delay. The results are compared with a similar analysis of archival data of Sco X-1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا