No Arabic abstract
After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20$^{mathrm{th}}$, 15:50 UTC to June 25$^{mathrm{th}}$, 4:05 UTC, from the optical V-band, up to the soft $gamma$-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20--40 keV) within 3 days. The flare recurrence can be as short as $sim$ 20~min from peak to peak. A model-independent analysis shows that the $>$6 Crab flares have a hard spectrum. A simple 10--400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.
We present a multiwavelength analysis of the simultaneous optical and X-ray light curves of the microquasar V404 Cyg during the June 2015 outburst. We have performed a comprehensive analysis of all the INTEGRAL/IBIS, JEM-X, and OMC observations during the brightest epoch of the outburst, along with complementary NuSTAR, AAVSO, and VSNET data, to examine the timing relationship between the simultaneous optical and X-ray light curves, in order to understand the emission mechanisms and physical locations. We have identified all optical flares which have simultaneous X-ray observations, and performed cross-correlation analysis to estimate the time delays between the optical and soft and hard X-ray emission. We have also compared the evolution of the optical and X-ray emission with the hardness-ratios. We have identified several types of behaviour during the outburst. On many occasions, the optical flares occur simultaneously with X-ray flares, but at other times positive and negative time delays between the optical and X-ray emission are measured. We conclude that the observed optical variability is driven by different physical mechanisms, including reprocessing of X-rays in the accretion disc and/or the companion star, interaction of the jet ejections with surrounding material or with previously ejected blobs, and synchrotron emission from the jet.
We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of $gamma$-ray emission on 26 June 2015, with a very soft spectrum above $100$ MeV, at a position consistent with the direction of V404 Cyg (within the $95%$ confidence region and a chance probability of $4 times 10^{-4}$). This emission cannot be associated with any previously-known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the $gamma$-ray emission is associated with V404 Cyg, the simultaneous detection of $511,$keV annihilation emission by INTEGRAL requires that the high-energy $gamma$ rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically-arrested disk where a bright $gamma$-ray jet can re-form after the occurrence of a major transient ejection seen in the radio.
We present a serendipitous multiwavelength campaign of optical photometry simultaneous with Integral X-ray monitoring of the 2015 outburst of the black hole V404 Cyg. Large amplitude optical variability is generally correlated with X-rays, with lags of order a minute or less compatible with binary light travel timescales or jet ejections. Rapid optical flaring on time-scales of seconds or less is incompatible with binary light-travel timescales and has instead been associated with synchrotron emission from a jet. Both this rapid jet response and the lagged and smeared one can be present simultaneously. The optical brightness is not uniquely determined by the X-ray brightness, but the X-ray/optical relationship is bounded by a lower-envelope such that at any given optical brightness there is a maximum X-ray brightness seen.} This lower-envelope traces out a Fopt proportional to Fx^0.54 relation which can be approximately extrapolated back to quiescence. Rapid optical variability is only seen near this envelope, and these periods correspond to the hardest hard X-ray colours. This correlation between hard X-ray colour and optical variability (and anti-correlation with optical brightness) is a novel finding of this campaign, and apparently a facet of the outburst behaviour in V404 Cyg. It is likely that these correlations are driven by changes in the central accretion rate and geometry.
The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source, observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRAL alerts, followed-up the flaring source for several nights during the period June 18-27, for more than 10 hours. One hour of observation was conducted simultaneously to a giant 22 GHz radio flare and a hint of signal at GeV energies seen by Fermi-LAT. The MAGIC observations did not show significant emission in any of the analysed time intervals. The derived flux upper limit, in the energy range 200--1250 GeV, is 4.8$times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$. We estimate the gamma-ray opacity during the flaring period, which along with our non-detection, points to an inefficient acceleration in the V404,Cyg jets if VHE emitter is located further than $1times 10^{10}$ cm from the compact object.
The black hole binary GS 2023+338 exhibited an unprecedently bright outburst on June 2015. Since June 17th, the high energy instruments on board INTEGRAL detected an extremely variable emission during both bright and low luminosity phases, with dramatic variations of the hardness ratio on time scales of ~seconds. The analysis of the IBIS and SPI data reveals the presence of hard spectra in the brightest phases, compatible with thermal Comptonization with temperature kTe ~ 40 keV. The seed photons temperature is best fit by kT0 ~ 7 keV, that is too high to be compatible with blackbody emission from the disk. This result is consistent with the seed photons being provided by a different source, that we hypothesize to be a synchrotron driven component in the jet. During the brightest phase of flares, the hardness shows a complex pattern of correlation with flux, with a maximum energy released in the range 40-100 keV. The hard X-ray variability for E > 50 keV is correlated with flux variations in the softer band, showing that the overall source variability cannot originate entirely from absorption, but at least part of it is due to the central accreting source.