No Arabic abstract
The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applied the model to a particular double-lobed radio source B1834+620 and showed that the orbit of the secondary is elliptical with a typical eccentricity $e simeq 0.68$ and the mass ratio $q$ of the secondary and the primary is $0.01 la q la 0.4$. The accretion disk is a standard $alpha$-disk with $0.01 la alpha la 0.04$ and the ratio of disk half height $H$ and radius $r$ is $delta simeq 0.01$. The model predicates that double-lobed radio structure forms only in FR II radio galaxies.
In spherical galaxies, binary supermassive black holes (SMBHs) have difficulty reaching sub-parsec separations due to depletion of stars on orbits that intersect the massive binary - the final-parsec problem. Galaxies that form via major mergers are substantially nonspherical, and it has been argued that the centrophilic orbits in triaxial galaxies might provide stars to the massive binary at a high enough rate to avoid stalling. Here we test that idea by carrying out fully self-consistent merger simulations of galaxies containing central SMBHs. We find hardening rates of the massive binaries that are indeed much higher than in spherical models, and essentially independent of the number of particles used in the simulations. Binary eccentricities remain high throughout the simulations. Our results constitute a fully stellar-dynamical solution to the final-parsec problem and imply a potentially high rate of events for low-frequency gravitational wave detectors like LISA.
We present the first fully relativistic prediction of the electromagnetic emission from the surrounding gas of a supermassive binary black hole system approaching merger. Using a ray-tracing code to post-process data from a general relativistic 3-d MHD simulation, we generate images and spectra, and analyze the viewing angle dependence of the light emitted. When the accretion rate is relatively high, the circumbinary disk, accretion streams, and mini-disks combine to emit light in the UV/EUV bands. We posit a thermal Compton hard X-ray spectrum for coronal emission; at high accretion rates, it is almost entirely produced in the mini-disks, but at lower accretion rates it is the primary radiation mechanism in the mini-disks and accretion streams as well. Due to relativistic beaming and gravitational lensing, the angular distribution of the power radiated is strongly anisotropic, especially near the equatorial plane.
One of the striking examples of episodic activity in active galactic nuclei are the double-double radio galaxies (DDRGs) with two pairs of oppositely-directed radio lobes from two different cycles of activity. We illustrate, using the DDRG J1453+3308 as an example, that observations over a wide range of frequencies using both the GMRT and the VLA can be used to determine the spectra of the inner and outer lobes, estimate their spectral ages, estimate the time scales of episodic activity, and examine any difference in the injection spectra in the two cycles of activity. Low-frequency GMRT observations also suggest that DDRGs and triple-double radio galaxies are rather rare.
In this paper we continue the first ever study of magnetized mini-disks coupled to circumbinary accretion in a supermassive binary black hole (SMBBH) approaching merger reported in Bowen et al. 2018. We extend this simulation from 3 to 12 binary orbital periods. We find that relativistic SMBBH accretion acts as a resonant cavity, where quasi-periodic oscillations tied to the the frequency at which the black holes orbital phase matches a non-linear $m=1$ density feature, or ``lump, in the circumbinary accretion disk permeate the system. The rate of mass accretion onto each of the mini-disks around the black holes is modulated at the beat frequency between the binary frequency and the lumps mean orbital frequency, i.e., $Omega_{rm beat} = Omega_{rm bin} - bar{Omega}_{rm lump}$, while the total mass accretion rate of this equal-mass binary is modulated at two different frequencies, $gtrsim bar{Omega}_{rm lump}$ and $approx 2 Omega_{rm beat}$. The instantaneous rotation rate of the lump itself is also modulated at two frequencies close to the modulation frequencies of the total accretion rate, $bar{Omega}_{rm lump}$ and $2 Omega_{rm beat}$. Because of the compact nature of the mini-disks in SMBBHs approaching merger, the inflow times within the mini-disks are comparable to the period on which their mass-supply varies, so that their masses---and the accretion rates they supply to their black holes---are strongly modulated at the same frequency. In essence, the azimuthal symmetry of the circumbinary disk is broken by the dynamics of orbits near a binary, and this $m=1$ asymmetry then drives quasi-periodic variation throughout the system, including both accretion and disk-feeding. In SMBBHs approaching merger, such time variability could introduce distinctive, increasingly rapid, fluctuations in their electromagnetic emission.
Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binarys orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binarys orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binarys orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binarys orbit evolves toward alignment with the plane of rotation of the nucleus; 2) binary orbital eccentricity decreases for aligned binaries and increases for counter-aligned ones. We find that the diffusive (random-walk) component of a binarys evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.